scholarly journals Experimental investigation of rockwool insulation hygrothermal properties related to material structure

2015 ◽  
Vol 19 (3) ◽  
pp. 923-928 ◽  
Author(s):  
Maja Djurovic-Petrovic

The hygrothermal properties related to rockwool insulation material structure with different additives are presented using rockwool insulation products obtained from row material of southern Serbia (Vranje region) in the wide range of reference temperatures (10?C to 70?C). The hygrothermal properties of basic sample (without additives) are compared to two samples with different additives for two sets of rockwool insulation samples namely: light-soft-panels (LSP) with density of 50 kg/m3, and middle-weight-panels (MWP) with density of 80 kg/m3. It is shown that there is significant (approximately 10%) improvement of thermal conductivity for additives based on zeolite. Also, correlation of thermal conductivity and sorption properties of selected samples are presented.

2014 ◽  
Vol 554 ◽  
pp. 322-326 ◽  
Author(s):  
Wuryanti Sri ◽  
Suhardjo Poertadji ◽  
Bambang Soegijono ◽  
Nasution Henry

The material with low thermal conductivity means it has a high insulating capability for reducing heat transfer. One of materials for insulation is cellulose. This study presents a insulation material of cellulose made from reeds imperata cylindrical type with the extraction process. The extraction of cellulose fibers to form a sheet by adding 3.5% Na-CMC (Sodium Cellulose Carboksil Metyl). The process of forming the sheet uses blender for 30 minutes, 45 minutes, and 60 minutes. Furthermore, each mixture are put into the oven with temperature of 40°C for 36 hours. There are three parameters will be investigated, i.e. thermal conductivity, density and thermal capacity. The results showed that the lowest and the highest of thermal conductivities were 0.22 W/m K and a maximum 0.36 W/m K, respectively.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1790
Author(s):  
Jeong-Hyeon Kim ◽  
Jae-Hyeok Ahn ◽  
Jeong-Dae Kim ◽  
Dong-Ha Lee ◽  
Seul-Kee Kim ◽  
...  

Polyurethane foam (PUF) has generally been used in liquefied natural gas (LNG) carrier cargo containment systems (CCSs) owing to its excellent mechanical and thermal properties over a wide range of temperatures. An LNG CCS must be designed to withstand extreme environmental conditions. However, as the insulation material for LNGC CCSs, PUF has two major limitations: its strength and thermal conductivity. In the present study, PUFs were synthesized with various weight percentages of porous silica aerogel to reinforce the characteristics of PUF used in LNG carrier insulation systems. To evaluate the mechanical strength of the PUF-silica aerogel composites considering LNG loading/unloading environmental conditions, compressive tests were conducted at room temperature (20 °C) and a cryogenic temperature (−163 °C). In addition, the thermal insulation performance and cellular structure were identified to analyze the effects of silica aerogels on cell morphology. The cell morphology of PUF-silica aerogel composites was relatively homogeneous, and the cell shape remained closed at 1 wt.% in comparison to the other concentrations. As a result, the mechanical and thermal properties were significantly improved by the addition of 1 wt.% silica aerogel to the PUF. The mechanical properties were reduced by increasing the silica aerogel content to 3 wt.% and 5 wt.%, mainly because of the pores generated on the surface of the composites.


2020 ◽  
Vol 10 (5) ◽  
pp. 602-609
Author(s):  
Adil H. Awad

Introduction: A new approach for expressing the lattice thermal conductivity of diatomic nanoscale materials is developed. Methods: The lattice thermal conductivity of two samples of GaAs nanobeam at 4-100K is calculated on the basis of monatomic dispersion relation. Phonons are scattered by nanobeam boundaries, point defects and other phonons via normal and Umklapp processes. Methods: A comparative study of the results of the present analysis and those obtained using Callaway formula is performed. We clearly demonstrate the importance of the utilised scattering mechanisms in lattice thermal conductivity by addressing the separate role of the phonon scattering relaxation rate. The formulas derived from the correction term are also presented, and their difference from Callaway model is evident. Furthermore their percentage contribution is sufficiently small to be neglected in calculating lattice thermal conductivity. Conclusion: Our model is successfully used to correlate the predicted lattice thermal conductivity with that of the experimental observation.


2021 ◽  
Vol 13 (14) ◽  
pp. 7945
Author(s):  
Matteo Vitale ◽  
María del Mar Barbero-Barrera ◽  
Santi Maria Cascone

More than 124 million tons of oranges are consumed in the world annually. Transformation of orange fruit generates a huge quantity of waste, largely composed of peels. Some attempts to reuse by-products derived from citrus waste have been proposed for energy production, nutrient source or pharmaceutical, food and cosmetic industries. However, their use in the building sector had not been researched. In this study, orange peels, in five different ratios, from 100% of wet peels to 75% and from 0% of dry peels to 25%, were submitted to a thermo-compression procedure. They were evaluated according to their physical (bulk density, water absorption, thickness swelling, surface soundness and thermal conductivity) and mechanical properties (bending strength and modulus of elasticity). The results showed that orange peels can be used as thermal insulation material. The addition of dried peels makes the structure of the board heterogeneous and thus increases its porosity and causes the loss of strength. Hence, the board with the sole use of wet peel, whose thermal conductivity is 0.065 W/mK while flexural strength is 0.09 MPa, is recommended.


2021 ◽  
pp. 014616722199763
Author(s):  
Ophir Katzenelenbogen ◽  
Nina Knoll ◽  
Gertraud Stadler ◽  
Eran Bar-Kalifa

Planning promotes progress toward goal achievement in a wide range of domains. To date, planning has mostly been studied as an individual process. In couples, however, the partner is likely to play an important role in planning. This study tested the effects of individual and dyadic planning on goal progress and goal-related actions. Two samples of couples ( N = 76 and N = 87) completed daily diaries over a period of 28 and 21 days. The results indicate that individual and dyadic planning fluctuate on a daily basis and support the idea that dyadic planning is predominantly used as a complementary strategy to individual planning. As expected, individual and dyadic planning were positively associated with higher levels of action control and goal progress. In Sample 2, dyadic planning was only associated with goal progress on days in which individuals felt that they were dependent upon their partners’ behaviors to achieve their goals.


2014 ◽  
Vol 526 ◽  
pp. 46-51
Author(s):  
Li Xiong Zhang ◽  
Rong Gang Gao

Based on the traditional theory of transient plane source for thermal conductivity measurement, this paper designed and developed a new pattern of heating and temperature sensing probe, presented the study of transient heat conduction of half-infinite plane while being heated, established a modified mathematical model of transient plane source method, and achieved the measurement of thermal conductivity of automotive interior material sample by the data processing method of mathematical iteration and liner regression using the modified transient plane source probe. According to the data of experiments, the instrument which this paper designed has a high precision of 5% and a wide range of 0.003-1W/(mK).This paper provides a practicable way for heat capacity determination of automotive interior materials.


1987 ◽  
Vol 8 (2) ◽  
pp. 263-280 ◽  
Author(s):  
H. Reiss ◽  
F. Schmaderer ◽  
G. Wahl ◽  
B. Ziegenbein ◽  
R. Caps

1991 ◽  
Vol 226 ◽  
Author(s):  
Wang Chunqing ◽  
Qian Yiyu ◽  
Jiang Yihong

AbstractIn this paper,a numerical simulation of thermal process in the SMT laser microsoldering joint has been developed, in which, the influence on thermal process of the factors such as the thermal conductivity variation of solder with temperature, light reflection coefficient of the lead wire surface, and heat exchange on the surface of SMT materials all have been considered. In order to carry this numerical calculation practice and prove it's results,the reflexive characteristic of light wave to the SMT materials has been gauged,and the dynamic temperature process of laser microjoint has been measured by a new experimental method which was invented by the authors.The results of numerical simulation have been borne out by the tests, and the influences of heating parameters on thermal process has been analysed in this paper.The conclusions will be advantageous to the further study of the microjoint quality control in the SMT laser microsoldering.


Sign in / Sign up

Export Citation Format

Share Document