scholarly journals Experimental evaluation of proposed multi-layered structure fire test methodology

2020 ◽  
pp. 231-231
Author(s):  
Remigijus Guobys ◽  
Vladas Vekteris ◽  
Vadim Moksin

The paper presents results of numerical simulation and fire tests of multi-layered structures carried out under real fire conditions. It has been shown that fire test carried out according to ISO 834 standard differs from fire test conducted under real fire conditions. A new fire test methodology has been proposed. It is suggested to use real fire temperatures during fire tests to avoid accidents and allow occupants to evacuate the building safely. ISO fire test standard should be improved visibly. Structural solutions to reduce temperatures and temperature deformations of multi-layered structures during fire are also reviewed. It was established that the gypsum layer should be placed in the middle of multi-layered structure in order to cool the structure more efficiently during fire.

Author(s):  
Petr Kuklík ◽  
Magdaléna Charvátová

The paper is focused on the influence of fire resistant coatings used on OSB boards on the fire resistance of entire light timber frame wall assemblies. Two fire tests were performed in the fire test laboratory of PAVUS, a.s. in Veselí nad Lužnicí. The fire tests were performed on a load bearing wall. The wall dimensions were 3.0 (depth) x 3.0 (height) m. According to EN 1995-1-2, the calculation for fire paints and coatings is not possible. The aim of the paper is the determination of the influence of this type of coating on the OSB board’s charring rate, the determination of the start of charring of a timber stud and the fire resistance of the whole construction.


Author(s):  
Remigijus Guobys ◽  
Vadim Mokshin

This article analyzes gypsum board dehydration effect on heat conductivity and deformation of multi-layered mechanical structures subjected to temperature changes. Specially designed structures (fire doors) consisting of steel sheets with stone wool and gypsum insulating layers in between were heated in furnace for a specified period of time of not less than 60 min. Temperature versus time curves and deformations of multi-layered structures were obtained. Experimental results were verified by numerical simulation. Experimental data was found to be in good agreement with numerical simulation results. The percent differences between door temperatures from simulation and fire test don’t exceed 9 %. This shows that thermal behavior of such multi-layered structures can be investigated numerically avoiding time-consuming and expensive fire tests. The data obtained allowed to calculate convective heat transfer coefficient of gypsum board, which was fitted into multi-layered mechanical structure. It was found that it is more advantageous to place gypsum layer in the middle of the structure rather than closer to the fire source in order to cool the structure more efficiently during fire.


2021 ◽  
Author(s):  
Kun Yang ◽  
Guide Deng ◽  
Haifeng Liang ◽  
Lin Liang

Abstract In recent years, there have been a number of fire and explosion accidents of hydrogen storage vessels in hydrogen stations all over the world. China is vigorously developing the hydrogen fuel cell vehicle industry. At present, more than 80 hydrogen refueling stations have been built, and 1000 hydrogen refueling stations are planned to be built in 2025. In order to study the response law and pressure relief requirements of hydrogen storage vessels in hydrogen refueling stations under fire condition, fire tests of hydrogen storage vessels filled with high pressure hydrogen is planning to carry out. In this paper, numerical simulation of fire tests of hydrogen storage vessels was carried out. The hydrogen storage vessel is a horizontal single-layer seamless structure with working pressure of 45 MPa, wall thickness of 35.4 mm, volume of 205 L and material of 4130X. Propane is used as fuel for fire test. Based on CFD software, the thermal structural response calculation model of the hydrogen storage vessel under fire condition was established. The response law of hydrogen temperature rise and pressure rise in the hydrogen storage vessel was analyzed, and the influence of filling medium, filling pressure and ambient temperature on the hydrogen storage vessel was studied. The research results provide technical guidance for the subsequent fire test of the hydrogen storage vessels.


2013 ◽  
Vol 838-841 ◽  
pp. 458-461
Author(s):  
Jing Cui ◽  
Ling Feng Yin ◽  
Xiao Ming Guo ◽  
Gan Tang ◽  
Tian Jiao Jin

Based on the fire tests of WILLIAMS double-poles structure, considering the dual nonlinear interaction of material and geometric, established one complete finite element model of grid structure. For the performance that the physical and mechanics properties of steel will degrade while the temperature arising, simulate the test models with ANSYS, get a better numerical results, proof the numerical method is feasible.


Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 616 ◽  
Author(s):  
Cung Lian Sang ◽  
Michael Adams ◽  
Timm Hörmann ◽  
Marc Hesse ◽  
Mario Porrmann ◽  
...  

The Two-Way Ranging (TWR) method is commonly used for measuring the distance between two wireless transceiver nodes, especially when clock synchronization between the two nodes is not available. For modeling the time-of-flight (TOF) error between two wireless transceiver nodes in TWR, the existing error model, described in the IEEE 802.15.4-2011 standard, is solely based on clock drift. However, it is inadequate for in-depth comparative analysis between different TWR methods. In this paper, we propose a novel TOF Error Estimation Model (TEEM) for TWR methods. Using the proposed model, we evaluate the comparative analysis between different TWR methods. The analytical results were validated with both numerical simulation and experimental results. Moreover, we demonstrate the pitfalls of the symmetric double-sided TWR (SDS-TWR) method, which is the most highlighted TWR method in the literature because of its highly accurate performance on clock-drift error reduction when reply times are symmetric. We argue that alternative double-sided TWR (AltDS-TWR) outperforms SDS-TWR. The argument was verified with both numerical simulation and experimental evaluation results.


Author(s):  
Kyung Soo Chung ◽  
Jae Sung Lee ◽  
Jong Eun Song ◽  
Woo Chul Kim ◽  
Heung Youl Kim ◽  
...  

New concrete filled double-tube (CFDT) sections consist of an inner and outer tube with fire protection mortar (FPM) filling the cavity between them and the inner tube also filled with concrete or not. An investigation into the fire performance of CFDT during the standard fire test is reported. Six full size FPM filled CFDT columns were designed for the fire tests. Detail failure modes of overall specimens and each component in the columns as well as temperature, deformation and fire endurance were presented. It showed that the fire resistance in the CFDT columns is significantly higher than that in concrete filled steel tubular (CFT) columns. Investigation into the fire performance of the columns reveals possible solutions to improve the fire resistance of CFT members.


Author(s):  
Francisco Gonzalez ◽  
Anand Prabhakaran ◽  
Andrew Robitaille ◽  
A. M. Birk ◽  
Frank Otremba

The frequent incidences of Non-Accident Releases (NARs) of lading from tank cars have resulted in an increasing interest in transporting hazardous materials in total containment conditions (i.e., no pressure relief devices). However, the ability of tank cars to meet thermal protection requirements provided in the Code of Federal Regulations under conditions of total containment has not been established. The intent of this effort was to evaluate through a series of third-scale fire tests, the ability of tank cars to meet the thermal protection requirements under total containment conditions, with a particular focus on caustic ladings. A previous paper on this effort described the test design and planning effort associated with this research effort. A series of seven fire tests were conducted using third scale tanks. The test fires simulated fully engulfing, hydrocarbon fueled, pool fire conditions. The initial tests were conducted with water as a lading under jacketed and non-jacketed conditions and also with different fill levels (98% full or 50% full). Additionally, two tests were conducted with the caustic, Sodium Hydroxide as the lading, each test with a different fill level. In general, the tanks with water were allowed to fail or reach near-failure conditions, whereas, the tests with the caustic lading were not allowed to proceed near failure for safety reasons. This paper describes the results and observations from the fire tests, and discusses the various factors that affected the fire test performance of the test tanks. Review of results from the one-third scale tests, and subsequent scaling to full-scale suggest that a full-scale tank car filled with 50% NaOH solution is unlikely to meet the 100-minute survival requirement under conditions of total containment.


Sign in / Sign up

Export Citation Format

Share Document