scholarly journals Heat generation and side milling stability of titanium alloy

2020 ◽  
Vol 24 (6 Part B) ◽  
pp. 4033-4040
Author(s):  
Hong-Tao Li ◽  
Gang Zhao ◽  
Ying-Xin Ji ◽  
Yi-Chen Zhang

In this paper, the thermal generation and milling stability of titanium alloy during machining are investigated mainly. A new definition of processing behavior is given based on the principles of minimization, entity expression and combination, and a model of side milling behavior is constructed. Through a series of side milling orthogonal experiments on Ti-6Al-4V titanium alloy, the cutting forces under different process parameters are obtained. Further, the cutting force coefficients of the model is calculated by the complete average algorithm and the peak average algorithm, and the milling stability of the system is analyzed by a stability lobe diagram. The results show that the different cutting parameters have important influences on the milling stability of titanium alloy.

2014 ◽  
Vol 800-801 ◽  
pp. 237-240
Author(s):  
Li Fu Xu ◽  
Ze Liang Wang ◽  
Shu Tao Huang ◽  
Bao Lin Dai

In this paper, the cutting experiment was used to study the influence of various cutting parameters on cutting force when rough turning titanium alloy (TC4) with the whole CBN tool. The results indicate that among the cutting speed, feed rate and cutting depth, the influence of the cutting depth is the most significant on cutting force; the next is the feed rate and the cutting speed is at least.


1999 ◽  
Author(s):  
J. R. Pratt ◽  
M. A. Davies ◽  
M. D. Kennedy ◽  
T. Kalmár-Nagy

Abstract A single-degree-of-freedom active cutting fixture is employed to reveal and analyse the hysteretic nature of the lobed stability boundary in a simple machining experiment. Specifically, the seventh stability lobe of a regenerative cutting process is mapped using experimental, analytical, and computational techniques. Then, taking width of cut as a control parameter, the transition from stable cutting to chatter is observed experimentally. The cutting stability is found to possess a substantial hysteresis so that either stable or chattering tool motions can exist at the same nominal cutting parameters, depending on initial conditions. This behavior is predicted by applying nonlinear regenerative chatter theory to an empirical characterization of the cutting force dependence on chip thickness. Time-domain simulations that incorporate both the nonlinear cutting force dependence on chip thickness and the multiple-regenerative effect due to the tool leaving the cut are shown to agree both qualitatively and quantitatively with experiment.


2011 ◽  
Vol 175 ◽  
pp. 289-293 ◽  
Author(s):  
Hao Liu ◽  
Chong Hu Wu ◽  
Rong De Chen

Side milling Ti6Al4V titanium alloys with fine grain carbide cutters is carried out. The influences of milling parameters on surface roughness are investigated and also discussed with average cutting thickness, material removal rate and vibration. The results reveal that the surface roughness increases with the increase of average cutting thickness and is primarily governed by the radial cutting depth.


2018 ◽  
Vol 5 ◽  
pp. 12
Author(s):  
Yanfeng Gao ◽  
Yongbo Wu ◽  
Jianhua Xiao ◽  
Dong Lu

Titanium alloys are extensively applied in the aircraft manufacturing due to their excellent mechanical and physical properties. At present, the α + β alloy Ti6Al4V is the most commonly used titanium alloy in the industry. However, the highest temperature that it can be used only up to 300 °C. BTi-6431S is one of the latest developed high temperature titanium alloys, which belongs to the near-α alloy group and has considerably high tensile strength at 650 °C. This paper investigates the machinability of BTi-6431S in the terms of cutting forces, chip formation and tool wear. The experiments are carried out in a range of cutting parameters and the results had been investigated and analyzed. The investigation shows that: (1) the specific cutting forces in the machining of BTi-6431S alloy are higher than in the machining of Ti6Al4V alloy; (2) the regular saw-tooth chips more easily formed and the shear bands are narrower in the machining of BTi-6431S; (3) SEM and EDS observations of the worn tools indicate that more cobalt elements diffuse into the workpiece from tool inserts during machining of BTi-6431S alloy, which significantly aggravates tool wear rate. The experimental results indicate that the machinability of BTi-6431S near alpha titanium alloy is significantly lower than Ti-6Al-4V alloy.


Author(s):  
J. A. Travieso-Rodriguez ◽  
G. Gomez-Gras ◽  
Silvia Garcia-Vilana ◽  
Ferran Mainau-Noguer ◽  
R. Jerez-Mesa

This paper aims to find the key process parameters for machining different parts of an automobile gearbox, commissioned by a company that needs to replace with the MQL lubrication system their current machining process based on cutting fluids. It particularly focuses on the definition of appropriate cutting parameters for machining under the MQL condition through a statistical method of Design of Experiments (DOE). Using a combination of recommended parameters, significant improvements in the surface roughness of different machined parts are shown. Production costs are also reduced by decreasing expenses on lubricants and by optimizing the cycle time reached under the new cutting conditions, what would help the implementing company to increase its profits and adapt to a modern sustainability-demanding production industry.


2007 ◽  
Vol 24-25 ◽  
pp. 103-108
Author(s):  
Q.L. Du ◽  
X.H. Chen ◽  
Ke Hua Zhang

In this paper, based on analyzing the properties of medical Ti-6Al-4V Titanium alloy, the author takes the purpose of studying the machinability of the medical Ti-6Al-4V Titanium alloy and aims at improving the tool durability. The study starts from the tool material, geometrical parameters of the tools, usage for the cutting and other aspects in order to achieve the suitability of selecting cutting tool as well as the optimization of choosing cutting usage which lays the foundation for further investigation of the machinability of the medical Ti-6Al-4V Titanium alloy and carry out the online optimization of cutting parameters.


2012 ◽  
Vol 490-495 ◽  
pp. 3912-3915 ◽  
Author(s):  
Wei Hua Wu ◽  
Wen Min Chen ◽  
Xue Hui Wang ◽  
Can Zhao

To select reasonable cutting parameters, improve the processing surface quality, and extend the tool life, this paper uses four solid carbide end milling tools to process TC4 titanium alloy, and analyses the influence of the difference cutting parameters and the geometric angles to chip shape. The experiment results indicate that the degree of serrated chip shape is increased by increasing the feed rate under the condition of certain spindle speed. But the degree of serrated chip shape may be decreased by the adoption of small axial and radial depth, or bigger rake angle and smaller helix angle. Select larger rake angle, cutting edge is sharp, the metal deformation of cutting layer is small, which can reduce the friction force when chip flowing through the tool rake face, so that the cutting force and cutting temperature decreases accordingly.The greater the helix angle is, the worse the chip removal conditions is, and the degree of serrated chip becomes larger, the blade is more sharp, easily crack, and the tool life decreases. So relatively small helix angle is better. The choice of angles is interrelated with each other, the selection of some angle separately cannot get the desired reasonable value.


2013 ◽  
Vol 710 ◽  
pp. 233-237
Author(s):  
Yong Qiang He

The aluminum 7075 workpieces are machined on a vertical machining center KX650 using laddered symmetrical tool path. The deformation characteristics are studied under different cutting conditions. Different cutting parameters are changed one by one in side milling tests to find out their impact on deformation error. The analyzed result provides a solid basis for machining parameter optimization in side milling thin-walled workpieces.


Sign in / Sign up

Export Citation Format

Share Document