scholarly journals Wetting layer evolution and interfacial heat transfer in water-air spray cooling process of hot metallic surface

2021 ◽  
pp. 318-318
Author(s):  
Lidan Ning ◽  
Liping Zou ◽  
Zhichao Li ◽  
Huiping Li

Spray cooling experiments on the hot metallic surfaces with different initial temperatures were performed. This paper adopts a self-developing program which is based on the inverse heat transfer algorithm to solve the interfacial heat transfer coefficient and heat flux. The temperature-dependent interfacial heat transfer mechanism of water-air spray cooling is explored according to the wetting layer evolution taken by a high-speed camera and the surface cooling curves attained by the inverse heat transfer algorithm. Film boiling, transition boiling, and nucleate boiling stages can be noticed during spray cooling process of hot metallic surface. When the cooled surface?s temperature drops to approximately 369?C - 424?C; the cooling process transfers into the transition boiling stage from the film boiling stage. The wetting regime begins to appear on the cooled surface, the interfacial heat transfer coefficient and heat flux begin to increase significantly. When the cooled surface?s temperature drops to approximately 217?C - 280?C, the cooling process transfers into the nucleate boiling stage. The cooled surface was covered by a liquid film, and the heat flux begins to decrease significantly.

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7588
Author(s):  
Nianyong Zhou ◽  
Hao Feng ◽  
Yixing Guo ◽  
Wenbo Liu ◽  
Haoping Peng ◽  
...  

With the rapid increase of heat flux and demand for miniaturization of electronic equipment, the traditional heat conduction and convective heat transfer methods could not meet the needs. Therefore, the spray cooling experiment was carried out to obtain the basic heat transfer and cooling process. In this experiment, the spray cooling system was set up to investigate the influence of refrigerant charge on heat transfer performance in steady-state, dynamic heating, and dissipating processes. In a steady-state, the heat transfer coefficient increased with the rise of the refrigerant charge. In the dynamic dissipating process, both heat flux and heat transfer coefficient decreased rapidly after the critical heat flux, and the surface temperature drop point of each refrigerant charge was presented. The optimum refrigerant charge was provided considering the cooling parameters and the system operating performance. When the refrigerant operating pressure was 0.5 MPa, the spray cooling process presented with the higher heat flux, heat transfer coefficient, and cooling efficiency in this experiment. Meanwhile, the suitable surface temperature drop point and more gentle heat flux curves in the nucleate boiling region were obtained. The research results will contribute to the spray cooling system design, which should be operated before departure from the nucleate boiling point for avoiding cooling failure.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
V. Sathyamurthi ◽  
H-S. Ahn ◽  
D. Banerjee ◽  
S. C. Lau

Pool boiling experiments were conducted with three horizontal, flat, silicon surfaces, two of which were coated with vertically aligned multiwalled carbon nanotubes (MWCNTs). The two wafers were coated with MWCNT of two different thicknesses: 9 μm (Type-A) and 25 μm (Type-B). Experiments were conducted for the nucleate boiling and film boiling regimes for saturated and subcooled conditions with liquid subcooling of 0–30°C using a dielectric fluorocarbon liquid (PF-5060) as test fluid. The pool boiling heat flux data obtained from the bare silicon test surface were used as a base line for all heat transfer comparisons. Type-B MWCNT coatings enhanced the critical heat flux (CHF) in saturated nucleate boiling by 58%. The heat flux at the Leidenfrost point was enhanced by a maximum of ∼150% (i.e., 2.5 times) at 10°C subcooling. Type-A MWCNT enhanced the CHF in nucleate boiling by as much as 62%. Both Type-A MWCNT and bare silicon test surfaces showed similar heat transfer rates (within the bounds of experimental uncertainty) in film boiling. The Leidenfrost points on the boiling curve for Type-A MWCNT occurred at higher wall superheats. The percentage enhancements in the value of heat flux at the CHF condition decreased with an increase in liquid subcooling. However the enhancement in heat flux at the Leidenfrost points for the nanotube coated surfaces increased with liquid subcooling. Significantly higher bubble nucleation rates were observed for both nanotube coated surfaces.


2001 ◽  
Vol 1 (1) ◽  
pp. 32
Author(s):  
P. M. Carrica ◽  
V. Masson

We present the results of an experimental study of the effects of externally imposed electric fields on boiling heat transfer and critical heat flux (CHF) in dielectric fluids. The study comprises the analysis of geometries that, under the effects of electric fields, cause the bubbles either to be pushed toward the heater or away from it. A local phase detection probe was used to measure the void fraction and the interfacial impact rate near the heater. It was found that the critical heat flux can be either augmented or reduced with the application of an electric field, depending on the direction of . In addition, the heat transfer can be slightly enhanced or degraded depending on the heat flux. The study of the two-phase flow in nucleate boiling, only for the case of favorable dielectrophoretic forces, reveals that the application of an electric field reduces the bubble detection time and increases the detachment frequency. It also shows that the two-phase flow characteristics of the second film boiling regime resemble more a nucleate boiling regime than a film boiling regime.


1980 ◽  
Vol 102 (1) ◽  
pp. 26-31 ◽  
Author(s):  
Salim Yilmaz ◽  
J. W. Westwater

Measurements were made of the heat transfer to Freon-113 at near atmospheric pressure, boiling outside a 6.5 mm dia horizontal steam-heated copper tube. Tests included pool boiling and also forced flow vertically upward at uelocities of 2.4, 4.0 and 6.8 m/s. The metal-to-liquid ΔT ranged from 13 to 125° C, resulting in nucleate, transition, and film boiling. The boiling curves for different velocities did not intersect or overlap, contrary to some prior investigators. The peak heat flux was proportional to the square root of velocity, agreeing with the Vliet-Leppert correlation, but disagreeing with the Lienhard-Eichhorn prediction of an exponent of 0.33. The forced-flow nucleate boiling data were well correlated by Rohsenow’s equation, except at high heat fluxes. Heat fluxes in film boiling were proportional to velocity to the exponent 0.56, close to the 0.50 value given by Bromley, LeRoy, and Robbers. Transition boiling was very sensitive to velocity; at a ΔT of 55° C the heat flux was 900 percent higher for a velocity of 2.4 m/s than for zero velocity.


2020 ◽  
Vol 996 ◽  
pp. 142-150
Author(s):  
Run Feng Wang ◽  
Ao Huang ◽  
Yan Zhu Huo ◽  
Li Jun Mei ◽  
Hong Jin Rao ◽  
...  

The accurate description of the interfacial heat transfer coefficient is of great significance for the accurate measurement of the temperature field in the process of casting cooling. In this paper, the solidification process of metallic tin in refractory mould was studied by physical simulation experiment, and the on-site temperature measurement of the mold structure was carried out. According to the temperature record, the numerical simulation method is used to realize the fitting of the calculated temperature and the measured temperature. The reversible method was used to calculate the interfacial heat transfer coefficient between the casting and the mould, and then the evolution of the internal temperature field of the casting during the cooling process was determined. The results show that the melt has a large shrinkage during the cooling process, and the interface heat transfer coefficient can reach 300 W·m-2·K-1, which provides a mathematical model for the annealing process of fused-cast refractories.


Materials ◽  
2019 ◽  
Vol 12 (11) ◽  
pp. 1836
Author(s):  
Min Luo ◽  
Daquan Li ◽  
Wenying Qu ◽  
Xiaogang Hu ◽  
Qiang Zhu ◽  
...  

Application of a coating on a mold surface is widely used in the foundry industry. Changes in coating change the heat transfer at the mold–melt interface, which influences the microstructure of the casting. In this study, the effect of boron nitride coating thickness on the interfacial heat transfer and slug microstructure in the Swirled Enthalpy Equilibration Device (SEED) process was investigated. The temperatures of the semi-solid slug and mold were measured, and the interfacial heat transfer coefficient and heat flux of the mold–slug interface was estimated based on these data. Microstructures of the quenched slugs were also examined. The results indicated that the interfacial heat transfer coefficient decreased with an increase in coating thickness and was sensitive to a coating thickness of less than 0.1 mm. The interfacial heat flux decreased sharply at the early stage, and then slowed down as the swirling time increased and the coating thickened. The coating thickness affected the temperature evolution of the slug at the early stage of the SEED process. As the coating thickness increased from near zero to 1.0 mm, the grain size of the slug increased by ~20 µm and the globular structure of the slug transformed into a dendritic structure.


1996 ◽  
Vol 118 (2) ◽  
pp. 463-470 ◽  
Author(s):  
T.-C. Jen ◽  
A. S. Lavine

In grinding processes, the grinding fluid is used to suppress the temperature rise in the grinding zone. Under some circumstances, the grinding fluid may undergo film boiling in the grinding zone, causing the workpiece temperature to rise significantly. The onsets of nucleate boiling and film boiling in the grinding zone are investigated in the present study. A model of heat transfer in grinding was previously developed (Jen and Lavine, 1995), which predicts the temperature and heat fluxes in the grinding zone. With some modification, this model is used here to predict the occurrence of film boiling of the grinding fluid. The dependence of the workpiece background temperature on the various grinding parameters is explored. The workpiece background temperature distribution along the grinding zone, and comparisons with experimental results, are presented.


2002 ◽  
Vol 1 (1) ◽  
Author(s):  
P. M. Carrica ◽  
V. Masson

We present the results of an experimental study of the effects of externally imposed electric fields on boiling heat transfer and critical heat flux (CHF) in dielectric fluids. The study comprises the analysis of geometries that, under the effects of electric fields, cause the bubbles either to be pushed toward the heater or away from it. A local phase detection probe was used to measure the void fraction and the interfacial impact rate near the heater. It was found that the critical heat flux can be either augmented or reduced with the application of an electric field, depending on the direction of . In addition, the heat transfer can be slightly enhanced or degraded depending on the heat flux. The study of the two-phase flow in nucleate boiling, only for the case of favorable dielectrophoretic forces, reveals that the application of an electric field reduces the bubble detection time and increases the detachment frequency. It also shows that the two-phase flow characteristics of the second film boiling regime resemble more a nucleate boiling regime than a film boiling regime.


2001 ◽  
Vol 124 (1) ◽  
pp. 63-72 ◽  
Author(s):  
Daniel P. Rini ◽  
Ruey-Hung Chen ◽  
Louis C. Chow

Bubble behavior during saturated FC-72 spray cooling was experimentally investigated. A heater previously used for pool boiling was used to allow direct comparison. The results are analyzed to reveal the interaction between bubbles and impinging droplets. The following are presented: (1) the importance of secondary nuclei entrained by impingement droplets, (2) the role of impinging droplets on bubble parameters such as growth, diameter at puncture, lifetime, life cycle and bubble number density, and (3) the relative contribution of nucleation, especially that of secondary nuclei, to the heat transfer. It is concluded that increasing the droplet flux increases the number of secondary nuclei, helps to lower surface temperature for a given heat flux, increases the overall heat transfer coefficient, and increases heat transfer due to both nucleate boiling and enhanced convection. Increasing the droplet flux also shortens the bubble growth time (i.e., resulting in earlier bubble removal) and life cycle. However, increasing the droplet flux (and, therefore, secondary nucleation) for each of the three heat flux values does not affect the percentage of either nucleate or convection heat transfer. This suggests that both the nucleate and convection heat transfer are enhanced, as a result of increased secondary nuclei and turbulent mixing due to the impinging droplets.


Sign in / Sign up

Export Citation Format

Share Document