scholarly journals Physiological and chemical characteristics of safflower (Carthamus tinctorius L.) grown in the presence of low salt concentrations

Author(s):  
Milena Danicic ◽  
Ivana Maksimovic ◽  
Marina Putnik-Delic

(Carthamus tinctorius L.) is highly regarded in the world as an aromatic, spicy, medicinal and oilseed crop, which can be used in all kinds of industries. It inhabits arid and semiarid areas of the world. The influence of the relatively low NaCl concentrations found in soils and irrigation waters on the growth and metabolism of saf?flower, grown under semi-controlled conditions, was examined in this work. It was found that increased concentrations of NaCl affected the number of leaves per plant and dry leaves mass/area ratio. The transpiration intensity was reduced in plants grown in the presence of NaCl and stomatal diffusive resistance increased following an increase in NaCl concentration.

Author(s):  
Yuanyuan Wang ◽  
Fanhao Meng ◽  
Min Luo

Abstract Growing water shortages have been a systemic risk around the world, especially in arid and semi-arid areas, with seriously threatening global food security and human well-being. Reasonable and accurate evaluations of the water shortages of cultivated lands provide scientific reference for irrigation strategies. In this study, to better understand the distribution and cause of water scarcity for the arid and semiarid areas, we used the arable land water scarcity index (AWSI), based on water footprint theory to accurately estimate the temporal and spatial patterns of the AWSI of Inner Mongolia in China over 1999–2018, and further reveal the key factors influencing the AWSI distribution. The AWSI distribution pattern of Inner Mongolia was high in southwest and low in northeast, with an average value of 0.63 and suffering from high water stress for a long time. The AWSI presented an increasing trend in 1999–2018, with slow in west (change rate2%) and fast in east (2%). The main factors that significantly affected the AWSI were precipitation, relative humidity, and agricultural planting area. This study can provide scientific reference for the formulation of agricultural water management and sustainable use strategies in arid and semiarid areas.


2021 ◽  
Vol 3 (01) ◽  
pp. 1-9
Author(s):  
Ibnu Rizki Perdana ◽  
Mieke Rochimi S ◽  
Pujawati Suryatmana

Chili (Capsicum annum L) was one of the vegetable commodities that have a significant  economic value. Farmland narrowed due to land conversion led to a shift of fertile agricultural lands into marginal lands such as saline land. This research aimed to determine respond of chili plant growth  to salinity stress in Inceptisols. The experiment was conducted in August-October 2020 with located at Ciparanje Experimental field of Faculty of Agriculture, Padjadjaran University, Jatinangor District, Sumedang Regency. This research used randomized block design using four level treatment of NaCl concentration: 0 dS/m (a0), 2 dS/m (a1), 4 dS/m (a2), and 6 dS/m (a3). The result showed that there was no significant between treatment soil salinization of plant growth parameters like plant height and shoot root ratio but significant of number of leaves at 7 day after plant and canopy width at 28 day after plant on treatment salinization 6 dS/m.


Author(s):  
Aiai Xu ◽  
Jie Liu ◽  
Zhiying Guo ◽  
Changkun Wang ◽  
Kai Pan ◽  
...  

It is critical to identify the assembly processes and determinants of soil microbial communities to better predict soil microbial responses to environmental change in arid and semiarid areas. Here, soils from 16 grassland-only, 9 paired grassland and farmland, and 16 farmland-only sites were collected across the central Inner Mongolia Plateau covering a steep environmental gradient. Through analyzing the paired samples, we discovered that land uses had strong effects on soil microbial communities, but weak effects on their assembly processes. For all samples, although no environmental variables were significantly correlated with the net relatedness index (NRI), both the nearest taxon index (NTI) and the β-nearest taxon index (βNTI) were most related to mean annual precipitation (MAP). With the increase of MAP, soil microbial taxa at the tips of the phylogenetic tree were more clustered, and the contribution of determinism increased. Determinism (48.6%), especially variable selection (46.3%), and stochasticity (51.4%) were almost equal in farmland, while stochasticity (75.0%) was dominant in grassland. Additionally, Mantel tests and redundancy analyses (RDA) revealed that the main determinants of soil microbial community structure were MAP in grassland, but mean annual temperature (MAT) in farmland. MAP and MAT were also good predictors of the community composition (the top 200 dominant OTUs) in grassland and farmland, respectively. Collectively, in arid and semiarid areas, soil microbial communities were more sensitive to environmental change in farmland than in grassland, and unlike the major impact of MAP on grassland microbial communities, MAT was the primary driver of farmland microbial communities. Importance As one of the most diverse organisms, soil microbes play indispensable roles in many ecological processes in arid and semiarid areas with limited macrofaunal and plant diversity, yet the mechanisms underpinning soil microbial community are not fully understood. In this study, soil microbial communities were investigated along a 500 km transect covering a steep environmental gradient across farmland and grassland in the areas. The results showed that precipitation was the main factor mediating the assembly processes. Determinism was more influential in farmland, and variable selection of farmland was twice that of grassland. Temperature mainly drove farmland microbial communities, while precipitation mainly affected grassland microbial communities. These findings provide new information about the assembly processes and determinants of soil microbial communities in arid and semiarid areas, consequently improving the predictability of the community dynamics, which have implications for sustaining soil microbial diversity and ecosystem functioning, particularly under global climate change conditions.


Author(s):  
I. Shakuntala Devi

Groundnut, the most important edible oilseed crop in India and is the low priced commodity with valuable source of all the nutrients. It is the sixth most important oilseed crop in the world. It contains 48-50% of oil and 26-28% of protein, and is a rich source of dietary fiber, minerals, and vitamins. More than seventy percent of the area and production is found in Gujarat, Andhra Pradesh, Tamil Nadu and Karnataka. Anantapur district is the largest groundnut producing district The present study was carried out with the objective of exploring movement of produce along the value chain, the Value addition, Price spread and Profit margins incurred and found that there is a wide range of price gap observed from producer of oilseed to the final consumer of edible oil due to the number of stakeholders involved in the value chain.


Forages ◽  
2020 ◽  
pp. 313-330
Author(s):  
Daren D. Redfearn ◽  
Keith R. Harmoney ◽  
Alexander J. Smart

2019 ◽  
Vol 98 ◽  
pp. 12007
Author(s):  
Tianming Huang ◽  
Baoqiang Ma ◽  
Yin Long ◽  
Zhonghe Pang

In arid and semiarid area, the recharge rate is relatively limited and the unsaturated zone (UZ) is commonly thick. The moisture in the UZ may represent the water infiltrating from precipitation during the past decades to thousands of years. Therefore, the multiple geochemical tracers in soil moisture, including Cl (chloride mass balance), 3H (tritium peak displacement), NO3, 2H, 18O, can be used to estimate diffuse recharge rate and related recharge characteristics. Based on 45 UZ profiles with maximum depth of 62 m in the Ordos Basin in NW China, a typical arid and semiarid area, we has used multiple geochemical tracers to study the following recharge informations: (1) reconstruction of groundwater recharge history, (2) determination of groundwater recharge mechanism, and (3) assessment of impact of vegetation changes on groundwater recharge. The results show that the soil texture (epically the shallow soil), vegetation and precipitation mainly control the recharge rate. This study also found that shallow groundwater in arid and semiarid areas is often not in equilibrium with near-surface boundary conditions. To estimate present recharge information, the UZ must be considered. The whole recharge process from precipitation to groundwater cannot be well understood unless the UZ have been included in arid and semiarid areas.


2017 ◽  
Vol 30 (18) ◽  
pp. 7451-7463 ◽  
Author(s):  
Shuyun Zhao ◽  
Hua Zhang ◽  
Zhili Wang ◽  
Xianwen Jing

Abstract The comprehensive effects of anthropogenic aerosols (sulfate, black carbon, and organic carbon) on terrestrial aridity were simulated using an aerosol–climate coupled model system. The results showed that the increase in total anthropogenic aerosols in the atmosphere from 1850 to 2010 had caused global land annual mean precipitation to decrease by about 0.19 (0.18, 0.21) mm day−1, where the uncertainty range of the change (minimum, maximum) is given in parentheses following the mean change, and reference evapotranspiration ET0 (representing evapotranspiration ability) to decrease by about 0.33 (0.31, 0.35) mm day−1. The increase in anthropogenic aerosols in the atmosphere from 1850 to 2010 had caused land annual mean terrestrial aridity to decrease by about 3.0% (2.7%, 3.6%). The areal extent of global total arid and semiarid areas had reduced due to the increase in total anthropogenic aerosols in the atmosphere from preindustrial times. However, it was found that the increase in anthropogenic aerosols in the atmosphere had enhanced the terrestrial aridity and thus resulted in an expansion of arid and semiarid areas over East and South Asia. The projected decrease in anthropogenic aerosols in the atmosphere from 2010 to 2100 will increase global land annual mean precipitation by about 0.15 (0.13, 0.16) mm day−1 and ET0 by about 0.26 (0.25, 0.28) mm day−1, thereby producing a net increase in terrestrial aridity of about 2.8% (2.1%, 3.6%) and an expansion of global total arid and semiarid areas.


Sign in / Sign up

Export Citation Format

Share Document