scholarly journals AN ACTIVE STEREO-ISOMER (TRANS-FORM) OF AMCHA AND ITS ANTIFIBRINOLYTIC (ANTI-PLASMINIC) ACTION IN VITRO AND IN VIVO

1964 ◽  
Vol 13 (4) ◽  
pp. 177-185 ◽  
Author(s):  
SHOSUKE OKAMOTO ◽  
SHOICHI SATO ◽  
YUMIKO TAKADA ◽  
UTAKO OKAMOTO
Keyword(s):  
2021 ◽  
Author(s):  
◽  
Christoph Kaiser

In dieser Arbeit wird sowohl das Potenzial von molekularen Photoschaltern als lichtempfindliche Komponenten für photopharmakologische Anwendungen als auch das von künstlichen RNA-Aptameren als regulatorische Schalteinheiten für die Entwicklung von funktionellen Riboschaltern untersucht. Verschiedene wesentliche Aspekte beider Anwendungs-felder wurden eingehend einzeln untersucht und die beiden Schaltsysteme schließlich durch das Design eines synthetischen RNA-Aptamers kombiniert, dessen Ligandbindung durch licht-induzierte Isomerisierung seines Photoschalterliganden reguliert werden kann. Molekulare Photoschalter wie Azobenzole und Spiropyrane haben sich als vielversprechende photochemische Werkzeuge erwiesen, um lichtgesteuert reversible und biochemisch nutzbare Effekte erzeugen. Spiropyrane bergen aufgrund der drastischen Veränderungen ihrer molekularen Eigenschaften infolge der Photoisomerisierung zum Merocyanin (MC) ein enormes Anwendungs-potenzial. Von den hier untersuchten wasserlöslichen Pyridin- (Py-) und Nitro-BIPS-Derivaten zeigt insbesondere die Py-BIPS-Verbindung 2 ein außerordentlich vielseitiges Verhalten. Im Vergleich zu anderen Vertretern dieser Photoschalterklasse wird ein deutlich höherer MC-Anteil von etwa 50% thermisch innerhalb von wenigen Minuten akkumuliert. Durch lichtinduzierten Ringschluss zum reinen Spiropyran (SP) und thermische Wiederherstellung des Gleichgewichts, kann diese hohe Schaltamplitude über mehrere Zyklen ohne signifikante Zersetzung beibehalten werden. Der Einsatz von schädlichem UV-Licht kann somit vermieden werden, was zusätzlich sehr vorteilhaft für einen möglichen Einsatz in einem biochemischen Kontext ist. Verbindung 2 weist zudem mehrere Protonierungsstellen auf, die ihr in Abhängigkeit des pH-Wertes faszinierende photosaure Eigenschaften verleihen. Das einfach protonierte HMC Isomer ermöglicht eine lichtstimulierte reversible Kontrolle des pH-Wertes in einem Bereich von etwa 4,5 bis 7,5, mit möglichen pH-Sprüngen von bis zu 1,5 Einheiten. Durch transiente Absorptionsstudien wurde ein Mechanismus für die Protonenfreisetzung nachgewiesen, der lediglich auf der Veränderung des pKs-Wertes der N-protischen Position infolge des lichtinduzierten Ringschlusses beruht. Im Gegensatz dazu wird das phenolische Proton des doppelt protonierten HMCH Isomers innerhalb von 1-2 Pikosekunden nach Anregung aus dem angeregten Zustand an das Lösemittel übertragen. Durch eingehende Ultrakurzzeitmessungen der Freisetzung des phenolischen Protons, konnten die protonierten Spezies der Py- und Nitro-Merocyanine als Superphotosäuren etabliert werden. Sie können somit als ultraschnelle Auslöser für protonenvermittelte Prozesse eingesetzt werden, die zu den fundamentalsten Reaktionen in der Natur gehören. Was potenzielle pharmakologische Zielsysteme betrifft, so dürfte RNA eine große Zukunft bevorstehen, da sie einfach zu synthetisieren ist und Zugang zu verschiedenen Ebenen zellulärer Regulationsmechanismen bietet. Insbesondere RNA-Aptamere, die in der Lage sind, niedermolekulare Liganden mit außergewöhnlich hoher Affinität und Spezifität zu binden, sind für die Entwicklung von künstlichen Riboschaltern hoch interessant. Während künstliche Aptamere für beliebige Liganden durch einen in vitro Selektionsprozess generiert werden können, ist nicht zur Gänze geklärt warum nur wenige von ihnen als aktive in vivo Riboschalter funktionieren. Die vorliegenden Ergebnisse zeigen die Bedeutung der konformationellen Aptamerdynamik während der Ligandenbindung für das Regulationspotential. Die Mg2+-abhängigen Bindungsstudien des hochfunktionellen Tetrazyklin (TC) -Aptamers zeigen, dass zweiwertige Kationen nicht nur für die korrekte Vorfaltung des Aptamers wichtig sind, sondern auch an der Ligandenbindung und RNA-Strukturanpassung selbst beteiligt sein können. Nach der Assoziation von TC an die Bindungstasche pflanzt sich eine Konformationsanpassung zur entfernten Dreifachhelixregion fort, wo Mg2+ zusätzlich für die Ausbildung endgültig gebundenen Zustandes benötigt wird. Neben dem Einfluss von Mg2+, zeigen zeitaufgelöste Ligandenbindungsstudien von drei Ciprofloxacin (CFX) -Aptameren eine klare Korrelation zwischen der Kinetik des Struktur-anpassungsschrittes der RNA an den Liganden und dem beobachteten Regulationspotenzial in parallel durchgeführten in vivo Assays. Es wird geschlussfolgert, dass eine beschleunigte und irreversible RNA-Anpassung auf eine Konformationsänderung hindeutet, die ausgeprägt genug ist, um eine Aktivität als Riboschalter zu ermöglichen. Diese Erkenntnisse werden durch die berichteten Ligandenbindungskinetiken von anderen künstlichen Aptameren und auch von natürlichen Riboschaltern bestätigt und sollten weitreichende Implikationen für die Optimierung von Selektionsprotokollen für funktionelle Aptamere haben. Schließlich wird ein lichtempfindliches RNA-Aptamer vorgestellt, dessen Ligand auf dem Antibiotikum Chloramphenicol (Cm) basiert, welches synthetisch mit einem Azobenzolfragment versehen wurde (azoCm). Durch systematische Optimierung von in vitro Selektionsprotokollen und die erfolgreiche Implementierung eines Belichtungsschrittes zur Isomerisierung des Liganden konnten Aptamere erhalten werden, die spezifisch an die trans-Form von azoCm binden. Bindungsaffinitätsstudien bestätigen diese Selektivität und durch Zirkulardichroismusstudien konnte zudem eine lichtinduzierte reversible Dissoziation des von cis-azoCm gezeigt werden. Damit wird hier eine erfolgreiche Entwicklungsstrategie für lichtabhängige RNA-Aptamer – Ligandsysteme dargelegt, welche wiederum fundamental neuartige Ansätze für die Erschließung lichtstimulierter biologischer Regulationswege zugänglich machen.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M.J. Murphy ◽  
R.R. Price ◽  
J.C. Sloman

The in vitro human tumor cloning assay originally described by Salmon and Hamburger has been applied recently to the investigation of differential anti-tumor drug sensitivities over a broad range of human neoplasms. A major problem in the acceptance of this technique has been the question of the relationship between the cultured cells and the original patient tumor, i.e., whether the colonies that develop derive from the neoplasm or from some other cell type within the initial cell population. A study of the ultrastructural morphology of the cultured cells vs. patient tumor has therefore been undertaken to resolve this question. Direct correlation was assured by division of a common tumor mass at surgical resection, one biopsy being fixed for TEM studies, the second being rapidly transported to the laboratory for culture.


Author(s):  
Raul I. Garcia ◽  
Evelyn A. Flynn ◽  
George Szabo

Skin pigmentation in mammals involves the interaction of epidermal melanocytes and keratinocytes in the structural and functional unit known as the Epidermal Melanin Unit. Melanocytes(M) synthesize melanin within specialized membrane-bound organelles, the melanosome or pigment granule. These are subsequently transferred by way of M dendrites to keratinocytes(K) by a mechanism still to be clearly defined. Three different, though not necessarily mutually exclusive, mechanisms of melanosome transfer have been proposed: cytophagocytosis by K of M dendrite tips containing melanosomes, direct injection of melanosomes into the K cytoplasm through a cell-to-cell pore or communicating channel formed by localized fusion of M and K cell membranes, release of melanosomes into the extracellular space(ECS) by exocytosis followed by K uptake using conventional phagocytosis. Variability in methods of transfer has been noted both in vivo and in vitro and there is evidence in support of each transfer mechanism. We Have previously studied M-K interactions in vitro using time-lapse cinemicrography and in vivo at the ultrastructural level using lanthanum tracer and freeze-fracture.


Author(s):  
D. Reis ◽  
B. Vian ◽  
J. C. Roland

Wall morphogenesis in higher plants is a problem still open to controversy. Until now the possibility of a transmembrane control and the involvement of microtubules were mostly envisaged. Self-assembly processes have been observed in the case of walls of Chlamydomonas and bacteria. Spontaneous gelling interactions between xanthan and galactomannan from Ceratonia have been analyzed very recently. The present work provides indications that some processes of spontaneous aggregation could occur in higher plants during the formation and expansion of cell wall.Observations were performed on hypocotyl of mung bean (Phaseolus aureus) for which growth characteristics and wall composition have been previously defined.In situ, the walls of actively growing cells (primary walls) show an ordered three-dimensional organization (fig. 1). The wall is typically polylamellate with multifibrillar layers alternately transverse and longitudinal. Between these layers intermediate strata exist in which the orientation of microfibrils progressively rotates. Thus a progressive change in the morphogenetic activity occurs.


Author(s):  
Conly L. Rieder ◽  
S. Bowser ◽  
R. Nowogrodzki ◽  
K. Ross ◽  
G. Sluder

Eggs have long been a favorite material for studying the mechanism of karyokinesis in-vivo and in-vitro. They can be obtained in great numbers and, when fertilized, divide synchronously over many cell cycles. However, they are not considered to be a practical system for ultrastructural studies on the mitotic apparatus (MA) for several reasons, the most obvious of which is that sectioning them is a formidable task: over 1000 ultra-thin sections need to be cut from a single 80-100 μm diameter egg and of these sections only a small percentage will contain the area or structure of interest. Thus it is difficult and time consuming to obtain reliable ultrastructural data concerning the MA of eggs; and when it is obtained it is necessarily based on a small sample size.We have recently developed a procedure which will facilitate many studies concerned with the ultrastructure of the MA in eggs. It is based on the availability of biological HVEM's and on the observation that 0.25 μm thick serial sections can be screened at high resolution for content (after mounting on slot grids and staining with uranyl and lead) by phase contrast light microscopy (LM; Figs 1-2).


Author(s):  
Robert J. Carroll ◽  
Marvin P. Thompson ◽  
Harold M. Farrell

Milk is an unusually stable colloidal system; the stability of this system is due primarily to the formation of micelles by the major milk proteins, the caseins. Numerous models for the structure of casein micelles have been proposed; these models have been formulated on the basis of in vitro studies. Synthetic casein micelles (i.e., those formed by mixing the purified αsl- and k-caseins with Ca2+ in appropriate ratios) are dissimilar to those from freshly-drawn milks in (i) size distribution, (ii) ratio of Ca/P, and (iii) solvation (g. water/g. protein). Evidently, in vivo organization of the caseins into the micellar form occurs in-a manner which is not identical to the in vitro mode of formation.


Author(s):  
U. Aebi ◽  
L.E. Buhle ◽  
W.E. Fowler

Many important supramolecular structures such as filaments, microtubules, virus capsids and certain membrane proteins and bacterial cell walls exist as ordered polymers or two-dimensional crystalline arrays in vivo. In several instances it has been possible to induce soluble proteins to form ordered polymers or two-dimensional crystalline arrays in vitro. In both cases a combination of electron microscopy of negatively stained specimens with analog or digital image processing techniques has proven extremely useful for elucidating the molecular and supramolecular organization of the constituent proteins. However from the reconstructed stain exclusion patterns it is often difficult to identify distinct stain excluding regions with specific protein subunits. To this end it has been demonstrated that in some cases this ambiguity can be resolved by a combination of stoichiometric labeling of the ordered structures with subunit-specific antibody fragments (e.g. Fab) and image processing of the electron micrographs recorded from labeled and unlabeled structures.


Author(s):  
Christopher Viney

Light microscopy is a convenient technique for characterizing molecular order in fluid liquid crystalline materials. Microstructures can usually be observed under the actual conditions that promote the formation of liquid crystalline phases, whether or not a solvent is required, and at temperatures that can range from the boiling point of nitrogen to 600°C. It is relatively easy to produce specimens that are sufficiently thin and flat, simply by confining a droplet between glass cover slides. Specimens do not need to be conducting, and they do not have to be maintained in a vacuum. Drybox or other controlled environmental conditions can be maintained in a sealed chamber equipped with transparent windows; some heating/ freezing stages can be used for this purpose. It is relatively easy to construct a modified stage so that the generation and relaxation of global molecular order can be observed while specimens are being sheared, simulating flow conditions that exist during processing. Also, light only rarely affects the chemical composition or molecular weight distribution of the sample. Because little or no processing is required after collecting the sample, one can be confident that biologically derived materials will reveal many of their in vivo structural characteristics, even though microscopy is performed in vitro.


Sign in / Sign up

Export Citation Format

Share Document