Superoxide Dismutase (SOD) in Mouse Red Blood Cells Infected with Plasmodium berghei

1982 ◽  
Vol 68 (2) ◽  
pp. 337 ◽  
Author(s):  
Upsorn Suthipark ◽  
Jerapan Krungkrai ◽  
Amornrat Jearnpipatkul ◽  
Yongyuth Yuthavong ◽  
Bhinyo Panijpan
2018 ◽  
Vol 7 (4) ◽  
pp. 376-383
Author(s):  
Bankole Olukayode Olusola ◽  
◽  
Oderinde Abdulganiyu Olumuyiwa ◽  

Malaria, a hazardous infirmity caused by a parasitic malady of the red blood cells, is without question harming to the wellbeing. In the present investigation, the chemosuppresive and haematopoietic activities of 200 mg/kg and 400 mg/kg body weight of unrefined ethanolic concentrates of three Chinese green teas (BIA 849, TD 570 and GB/T19598) were assessed using the 4-day suppressive anti-plasmodial assay in mice Plasmodium berghei (NK65 strain) pre-infected mice. The effect of the extracts on weight of the animals was evaluated. It was observed that 200 mg/kg bw (body weight) of BIA 849 and GB/T19598 were as potent as 5 mg/kg bw of chloroquine, with percentage suppressions of 58.97 ± 5.04, 57.63 ± 5.62 and 57.50 ± 4.5, respectively. TD570 at 200 mg/kg bw was more effective in suppressing plasmodium. 400 mg/kg body weight of TD570 and GB/T19598 extracts were more potent than 5 mg/kg bw of chloroquine having 100 % chemosuppression. The chemosuppression of BIA 849 did not change altogether at 400 mg/kg bw. The haematological parameters, WBC, RBC and MCV did not significantly change in the groups treated with the tea extracts utilizing suppressive model of malaria treatment contrasted with the uninfected group and were comparable to those treated with chloroquine. Haemoglobin concentration nonetheless, varied significantly with respect to the uninfected group. Weight changes were most significant with 200 mg/kg bw of TD 570 treated group (32 % increase) on suppression. All in all, the green teas displayed high chemosuppressive and haematopoietic possibilities and are thusly prescribed as contender for additionally screening as elective antimalarial drugs


2019 ◽  
Vol 234 (11) ◽  
pp. 20546-20553 ◽  
Author(s):  
Sangwoo Kwon ◽  
Dong‐Hun Lee ◽  
Se‐Jik Han ◽  
Woochul Yang ◽  
Fu‐Shi Quan ◽  
...  

Parasitology ◽  
1979 ◽  
Vol 78 (3) ◽  
pp. 263-270 ◽  
Author(s):  
R. J. Howard ◽  
F. L. Battye

SUMMARYA cell-sorting method is described for the analysis and separation of red blood cells in Plasmodium berghei-infected mouse blood based on their DNA content. This method involves a selective uptake of the bis-benzimidazole dye 33258 Hoechst, a DNA-binding dye, by red blood cells containing parasites. Infected blood is incubated at 37 °C with the dye then washed at 4 °C to remove unbound dye. Uninfected cells are then non-fluorescent at the characteristic wavelengths for 33258 Hoechst excitation and emission, whereas parasitized cells display fluorescence intensities in approximately direct proportion to the number of parasite nuclei (i.e. amount of parasite DNA) within the cell and can be sorted accordingly. Providing cells were incubated in a complex nutrient medium during dye uptake at 37°C, the sorted parasite cells produced lethal P. berghei infections when injected into BALB/c mice. The dyelabelling technique is simple and sufficient red blood cells at various stages of infection can be collected for biochemical or immunochemical studies by cell sorting.


Parasitology ◽  
2016 ◽  
Vol 143 (12) ◽  
pp. 1672-1680 ◽  
Author(s):  
YAN DING ◽  
WENYUE XU ◽  
TAOLI ZHOU ◽  
TAIPING LIU ◽  
HONG ZHENG ◽  
...  

SUMMARYMalaria remains one of the most devastating diseases. Cerebral malaria (CM) is a severe complication of Plasmodium falciparum infection resulting in high mortality and morbidity worldwide. Analysis of precise mechanisms of CM in humans is difficult for ethical reasons and animal models of CM have been employed to study malaria pathogenesis. Here, we describe a new experimental cerebral malaria (ECM) model with Plasmodium berghei ANKA infection in KunMing (KM) mice. KM mice developed ECM after blood-stage or sporozoites infection, and the development of ECM in KM mice has a dose-dependent relationship with sporozoites inoculums. Histopathological findings revealed important features associated with ECM, including accumulation of mononuclear cells and red blood cells in brain microvascular, and brain parenchymal haemorrhages. Blood–brain barrier (BBB) examination showed that BBB disruption was present in infected KM mice when displaying clinical signs of CM. In vivo bioluminescent imaging experiment indicated that parasitized red blood cells accumulated in most vital organs including heart, lung, spleen, kidney, liver and brain. The levels of inflammatory cytokines interferon-gamma, tumour necrosis factor-alpha, interleukin (IL)-17, IL-12, IL-6 and IL-10 were all remarkably increased in KM mice infected with P. berghei ANKA. This study indicates that P. berghei ANKA infection in KM mice can be used as ECM model to extend further research on genetic, pharmacological and vaccine studies of CM.


2015 ◽  
Vol 2015 ◽  
pp. 1-4 ◽  
Author(s):  
Peace Mayen Edwin Ubulom ◽  
Chinweizu Ejikeme Udobi ◽  
Mark Iheukwumere Madu

Objective. The study was designed to determine the efficacy of combined Amodiaquine and Ciprofloxacin in plasmodiasis therapy.Method. The in vivo antiplasmodial effect of different dosage levels of Amodiaquine, Ciprofloxacin, and their combinations againstPlasmodium berghei bergheiwas evaluated using Swiss albino mice.Results. Amodiaquine (a known antiplasmodial agent) had a fairly significant antiplasmodial effect reducing the parasites for every 100 red blood cells (RBC) from 66 to 16 (75.75%) at the tolerable dosage level of 7.5 mg/kg body weight while Ciprofloxacin (an antibiotic known to have antimalarial effect) showed an insignificant antiplasmodial effect reducing the parasites for every 100 RBC from 65 to 64 (1.53%) at the tolerable dosage level of 10.7 mg/kg body weight. Conversely, the combination therapy of Amodiaquine and Ciprofloxacin had a significant antiplasmodial effect at all the doses administered. The combination of 7.5 mg/kg of Amodiaquine and 12.8 mg/kg of Ciprofloxacin, however, showed the most significant antiplasmodial effect of the doses used reducing the number of parasites per 100 RBC from 60 to 10 (83.33%).Conclusions. Appropriate Amodiaquine and Ciprofloxacin combination will be effective for the treatment of malaria and better than either Amodiaquine or Ciprofloxacin singly at their recommended dosage levels.


1969 ◽  
Vol 26 (2) ◽  
pp. 181-186 ◽  
Author(s):  
C.W. Lawrence ◽  
Richard J. Cenedella

Acta Tropica ◽  
2012 ◽  
Vol 122 (1) ◽  
pp. 113-118 ◽  
Author(s):  
Voravuth Somsak ◽  
Somdet Srichairatanakool ◽  
Yongyuth Yuthavong ◽  
Sumalee Kamchonwongpaisan ◽  
Chairat Uthaipibull

Sign in / Sign up

Export Citation Format

Share Document