km mice
Recently Published Documents


TOTAL DOCUMENTS

25
(FIVE YEARS 12)

H-INDEX

7
(FIVE YEARS 3)

Author(s):  
Xuefang Mei ◽  
Yaoyao Zhang ◽  
Chenyu Quan ◽  
Yiying Liang ◽  
Weiyi Huang ◽  
...  

As a putative model of Fasciola gigantica infection, detailed data in Kunming (KM) mice infected with F. gigantica are lacking. In this study, KM mice were orally infected with 15 metacercaria for 8 weeks. Macroscopic and microscopic changes, serum biochemistry, cytokine responses, and changes in parasite-specific immunoglobulin G (IgG) antibody levels were monitored at 1, 3, 5, 7, and 8 weeks post-infection (wpi), respectively. The serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT) increased after infection, while that of albumin (ALB) decreased, which was positively correlated with the degree of liver damage. Between 5 and 7 wpi, the mice showed symptoms of anemia and weight loss, possibly caused by the decrease of alkaline phosphatase (ALP). Moreover, the changing tendencies of the levels of globulin (GLB) and parasite-specific IgG antibody were similar, suggesting a potential correlation between GLB production and adaptive immune response in the host. Coordinated variations in interferon gamma (IFN-γ) and interleukin 4 (IL-4) indicated a mixed T helper 1 (Th1)/Th2 cellular immune response. Furthermore, the serum IgG antibody increased after infection and peaked at 5 wpi, and it was positively correlated with the average parasite burdens. The worms collected from mice were approximately 1 cm in length at 8 wpi, their digestive and reproductive systems were well developed, and no eggs were found in the uterus. To the best of our knowledge, this is the first report describing detailed histological, biochemical, and immunological indices in KM mice infected with F. gigantica, which provides basic information on KM mice against infection with F. gigantica.


2021 ◽  
Author(s):  
Yinlan Xu ◽  
Shuangxiu Wan ◽  
Panpan Sun ◽  
Ajab Khan ◽  
Jianhua Guo ◽  
...  

Abstract Background PCV2 (Porcine circovirus type 2) is one of the major pathogens commonly in pigs, which can cause immunosuppression and apoptosis. Vaccinations and single drugs are not totally prevent and treat PCV2 diseases. We have previously reported that the synergistic anti-PCV2 effects of Matrine and Osthole were better than Matrine or Osthole alone in vitro, Matrine and Osthole were purchased with a clear content, chemical structure and plant origin. This study aimes to evaluate theirs synergistic anti-PCV2 effect and mechanism in Kunming (KM) mice model infected with PCV2. KM mice were randomly divided into 8 groups, namly: normal control group, PCV2 infected group, Matrine combined with Osthole high dose treatment group (40 mg/kg + 12 mg/kg), medium dose treatment group (20 mg/kg + 6 mg/kg), low dose treatment group (10 mg/kg + 3 mg/kg), Matrine treatment group (40 mg/kg), Osthole treatment group (12 mg/kg) and Ribavirin positive control group (40 mg/kg). PCV2 was intraperitoneally (i.p.) injected in all mice except the normal control group. At 5 days post-infection (dpi), mice in different treatment groups were injected i.p. with various doses of Matrine, Osthole and Ribavirin once daily for 5 consecutive days. Results The synergistic inhibition effect of Matrine and Osthole on PCV2 replication in mouse liver was significantly stronger than that of Matrine and Osthole alone. The protein expression of GRP78, p-PERK, p-eIF2α, ATF4, CHOP, cleaved caspase-3 and Bax were significantly reduced, but the protein expression of Bcl-2 was significantly increased in Matrine combined with Osthole groups, which alleviated the pathological change caused by PCV2, such as interstitial pneumonia, loss of spleen lymphocytes, infiltration of macrophages and eosinophils. Conclusions The synergistic effect of anti-apoptosis was better than that of Matrine and Osthole alone, although both of Matrine and Osthole could also directly inhibited the expression of PCV2 Cap and then inhibited the apoptosis of spleen cells induced by PCV2 Cap through the PERK pathway activated by endoplasmic reticulum (ER) GRP78. These results provide a new insight into controlling PCV2 infection and provide good component prescription candidate for the development of novel anti-PCV2 drugs.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Huajing Wang ◽  
Shuo Li ◽  
Zhao Cui ◽  
Tingting Qin ◽  
Hang Shi ◽  
...  

Abstract Background Malaria is a fatal disease that presents clinically as a continuum of symptoms and severity, which are determined by complex host-parasite interactions. Clearance of infection is believed to be accomplished by the spleen and mononuclear phagocytic system (MPS), independent of artemisinin treatment. The spleen filters infected red blood cells (RBCs) from circulation through immune-mediated recognition of the infected RBCs followed by phagocytosis. This study evaluated the tolerance of four different strains of mice to Plasmodium berghei strain K173 (P. berghei K173), and the differences in the role of the spleen in controlling P. berghei K173 infection. Methods Using different strains of mice (C57BL/6, BALB/C, ICR, and KM mice) infected with P. berghei K173, the mechanisms leading to splenomegaly, histopathology, splenocyte activation and proliferation, and their relationship to the control of parasitaemia and host mortality were examined and evaluated. Results Survival time of mice infected with P. berghei K173 varied, although the infection was uniformly lethal. Mice of the C57BL/6 strain were the most resistant, while mice of the strain ICR were the most susceptible. BALB/c and KM mice were intermediate. In the course of P. berghei K173 infection, all infected mice experienced significant splenomegaly. Parasites were observed in the red pulp at 3 days post infection (dpi) in all animals. All spleens retained late trophozoite stages as well as a fraction of earlier ring-stage parasites. The percentages of macrophages in infected C57BL/6 and KM mice were higher than uninfected mice on 8 dpi. Spleens of infected ICR and KM mice exhibited structural disorganization and remodelling. Furthermore, parasitaemia was significantly higher in KM versus C57BL/6 mice at 8 dpi. The percentages of macrophages in ICR infected mice were lower than uninfected mice, and the parasitaemia was higher than other strains. Conclusions The results presented here demonstrate the rate of splenic mechanical filtration and that splenic macrophages are the predominant roles in controlling an individual’s total parasite burden. This can influence the pathogenesis of malaria. Finally, different genetic backgrounds of mice have different splenic mechanisms for controlling malaria infection.


Author(s):  
Wenqing Xiao ◽  
Qing Zhong ◽  
Feng Sun ◽  
Weiguang Wang ◽  
Zhiyao Zhao ◽  
...  

The effects of microcystin-RR (MC-RR) on water metabolism were studied on Sprague–Dawley (SD) rats and KunMing (KM) mice. In the single dose toxicity test, polydipsia, polyuria, hematuria and proteinuria were found in group of rats receiving a MC-RR dose of 574.7 μg/kg, and could be relieved by dexamethasone (DXM). Gradient damage was observed in kidney and liver in rats with gradient MC-RR doses of 574.7, 287.3, and 143.7 μg/kg. No significant water metabolic changes or kidney injuries were observed in mice treated with MC-RR doses of 210.0, 105.0, and 52.5 μg/kg. In the continuous exposure test, in which mice were administrated with 140.0, 70.0, and 35.0 μg/kg MC-RR for 28 days, mice in the 140.0 μg/kg group presented increasing polydipsia, polyuria, and liver damage. However, no anatomic or histological changes, including related serological and urinary indices, were found in the kidney. In summary, abnormal water metabolism can be induced by MC-RR in rats through kidney injury in single dose exposure; the kidney of SD rats is more sensitive to MC-RR than that of KM mouse; and polydipsia and polyuria in mice exposed to MC-RR for 28 days occurred but could not be attributed to kidney damage.


2021 ◽  
Author(s):  
Huajing Wang ◽  
Shuo Li ◽  
Zhao Cui ◽  
Tingting Qin ◽  
Hang Shi ◽  
...  

ABSTRACTMalaria is a fatal disease that presents clinically as a continuum of symptoms and severity, which are determined by complex host-parasite interactions. Clearance of infection is believed to be accomplished by the spleen and mononuclear phagocytic system (MPS), both in the presence and absence of artemisinin treatment. The spleen filters infected RBCs from circulation through immune-mediated recognition of the infected RBCs followed by phagocytosis. Using different strains of mice infected with P. berghei K173 (PbK173), the mechanisms leading to splenomegaly, histopathology, splenocyte activation and proliferation, and their relationship to control of parasitemia and host mortality were examined. Survival time of mice infected with PbK173 varied, although the infection was uniformly lethal. Mice of the C57BL/6 strain were the most resistant, while mice of the strain ICR were the most susceptible. BALB/c and KM mice were intermediate. In the course of PbK173 infection, both strains of mice experienced significant splenomegaly. Parasites were observed in the red pulp at 3 days post infection in all animals. All spleens retained late trophozoite stages as well as a fraction of earlier ring-stage parasites. The percentages of macrophages in infected C57BL/6 and KM mice were higher than uninfected mice on 8 dpi. Spleens of infected ICR and KM mice exhibited structural disorganization and remodeling. Furthermore, parasitemia was significantly higher in KM versus C57BL/6 mice at 8 dpi. The percentages of macrophages in ICR infected mice were lower than uninfected mice, and the parasitemia was higher than other strains. The results presented here demonstrate the rate of splenic mechanical filtration and the splenic macrophages likely contribute to an individual’s total parasite burden. This in turn can influence the pathogenesis of malaria. Finally, different genetic backgrounds of mice have different splenic mechanisms for controlling malaria infection.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Bo Qian ◽  
Chengqiang Wang ◽  
Zhen Zeng ◽  
Yuan Ren ◽  
Dayu Li ◽  
...  

Ulcerative colitis is a chronic gastrointestinal disease characterized by intestinal inflammation and serious mucosal damage. As a naturally hydroxycinnamic acid, sinapic acid (SA) has antioxidant, anticancer, and neuroprotective activities. We investigated the anticolitic effect and potential mechanisms of SA in DSS-induced colitis in Kunming (KM) mice. SA treatment significantly reduced body weight loss, colon shortening, and intestinal wall thickening in colitis mice. SA treatment also significantly reduced the histological infiltration of inflammatory cells and decreased myeloperoxidase (MPO) activity in the colons of colitis mice. The administration of SA attenuated oxidative damage by enhancing the activity of superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and catalase and reduced the serum and colonic mRNA levels of proinflammatory cytokines in colitis mice. We used qRT-PCR and Western blotting assays and demonstrated that SA reduced the activation of the NLRP3 inflammasome and attenuated intestinal permeability by enhancing the expression of ZO-1, occludin, and claudin-1 in colitis mice. Here, we conclude that SA exhibits great anticolitic activity against DSS-induced colitis by enhancing the activity of antioxidant enzymes, reducing intestinal inflammation, and maintaining the intestinal barrier. Finally, we suggest that SA may be a safe adjuvant for the prevention of clinical colitis.


2020 ◽  
Vol 17 (2) ◽  
pp. 164-170
Author(s):  
Fenghui Guo ◽  
Jinmeng Kang ◽  
Juntao Tan ◽  
Yong Wang ◽  
Li Jia ◽  
...  

Background: Iron homeostasis disorder and neuroinflammation are the most commonly known factors that promote the occurrence and development of cognitive impairment in people. Dexmedetomidine has an anti-inflammatory effect, and it reduces the incidence of postoperative cognitive dysfunction. Therefore, the aim of this study is to verify whether dexmedetomidine could improve lipopolysaccharide-induced iron homeostasis disorder in aged mice, and show neuroprotective effect. Methods: First part, forty 12 month old male Kunming(KM) mice were divided into group N and group D: Normal saline group (group N), Dexmedetomidine group (group D). Second part, sixty 12-month-old male KM mice were divided into the following three groups: Normal saline group (group N), Lipopolysaccharide group (group LPS) and Dexmedetomidine + Lipopolysaccharide group (group D + LPS). The mice in group D + LPS were given dexmedetomidine, and given LPS intraperitoneally 2 h later. Mice underwent an oriented navigation test and a space exploration test in the Morris Water maze (MWM) test. The expression levels of Interleukin-6 ( IL-6), L-ferritin (FTL) and Transferrin receptor-1 (TfR1) in hippocampus were detected by the Western blot analysis; the hippocampal hepcidin mRNA was detected by Real-time PCR(RT-PCR); the reactive oxygen species (ROS) in the hippocampus was measured using ROS test kit. Results: Dexmedetomidine improved the cognitive decline induced by LPS. Dexmedetomidine reduced the level of hippocampal IL-6, and it attenuated the increase in their levels caused by LPS. It had no effect on hippocampal hepcidin mRNA, FTL, TfR1 and ROS but it could attenuate the increase caused by LPS. Conclusion: Dexmedetomidine has no effect on iron metabolism pathway, but it can improve the cognitive decline and the iron disorder by reducing neuroinflammation and oxidative stress. The research indicates that dexmedetomidine plays a neuroprotective role.


2020 ◽  
Vol 83 (6) ◽  
pp. 1066-1071
Author(s):  
XUE HAN ◽  
LIQIN BAI ◽  
YABING WANG ◽  
YANDONG LI ◽  
DANDAN ZHAO ◽  
...  

ABSTRACT Microwave technology has been widely used in the food industry, but the effect of microwave-heated food on human health is being questioned. Female KM mice were chosen to be treated with microwave-heated milk (MM), and reproductive markers such as litter size, birth rate, survival rate, and ovarian index were evaluated. With longer term feeding, the reproductive status (body weight, birth rate, litter size, neonatal survival rate, interpregnancy interval, and brain superoxide dismutase and catalase activity) of KM mice treated with MM did not significantly change except for the ovarian index of first-generation mice, which was decreased significantly compared with the control group and the group given electrically heated milk. Longer term consumption of MM can affect the ovarian index of reproductive mice. HIGHLIGHTS


2019 ◽  
Vol 84 (7) ◽  
pp. 1900-1908 ◽  
Author(s):  
Ying‐Jun Zhou ◽  
Ya‐Ning Chang ◽  
Jia‐Qi You ◽  
Sui‐Zi Li ◽  
Wei Zhuang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document