PHYSICAL THEORY AND NATURAL CLASSIFICATION

1988 ◽  
Vol 102 ◽  
pp. 343-347
Author(s):  
M. Klapisch

AbstractA formal expansion of the CRM in powers of a small parameter is presented. The terms of the expansion are products of matrices. Inverses are interpreted as effects of cascades.It will be shown that this allows for the separation of the different contributions to the populations, thus providing a natural classification scheme for processes involving atoms in plasmas. Sum rules can be formulated, allowing the population of the levels, in some simple cases, to be related in a transparent way to the quantum numbers.


Author(s):  
Leemon B. McHenry

What kinds of things are events? Battles, explosions, accidents, crashes, rock concerts would be typical examples of events and these would be reinforced in the way we speak about the world. Events or actions function linguistically as verbs and adverbs. Philosophers following Aristotle have claimed that events are dependent on substances such as physical objects and persons. But with the advances of modern physics, some philosophers and physicists have argued that events are the basic entities of reality and what we perceive as physical bodies are just very long events spread out in space-time. In other words, everything turns out to be events. This view, no doubt, radically revises our ordinary common sense view of reality, but as our event theorists argue common sense is out of touch with advancing science. In The Event Universe: The Revisionary Metaphysics of Alfred North Whitehead, Leemon McHenry argues that Whitehead's metaphysics provides a more adequate basis for achieving a unification of physical theory than a traditional substance metaphysics. He investigates the influence of Maxwell's electromagnetic field, Einstein's theory of relativity and quantum mechanics on the development of the ontology of events and compares Whitehead’s theory to his contemporaries, C. D. Broad and Bertrand Russell, as well as another key proponent of this theory, W. V. Quine. In this manner, McHenry defends the naturalized and speculative approach to metaphysics as opposed to analytical and linguistic methods that arose in the 20th century.


1998 ◽  
Vol 37 (1) ◽  
pp. 179-185
Author(s):  
Morten Grum

On evaluating the present or future state of integrated urban water systems, sewer drainage models, with rainfall as primary input, are often used to calculate the expected return periods of given detrimental acute pollution events and the uncertainty thereof. The model studied in the present paper incorporates notions of physical theory in a stochastic model of water level and particulate chemical oxygen demand (COD) at the overflow point of a Dutch combined sewer system. A stochastic model based on physical mechanisms has been formulated in continuous time. The extended Kalman filter has been used in conjunction with a maximum likelihood criteria and a non-linear state space formulation to decompose the error term into system noise terms and measurement errors. The bias generally obtained in deterministic modelling, by invariably and often inappropriately assuming all error to result from measurement inaccuracies, is thus avoided. Continuous time stochastic modelling incorporating physical, chemical and biological theory presents a possible modelling alternative. These preliminary results suggest that further work is needed in order to fully appreciate the method's potential and limitations in the field of urban runoff pollution modelling.


1947 ◽  
Vol 14 (2) ◽  
pp. 105-115 ◽  
Author(s):  
Erwin Biser
Keyword(s):  

2021 ◽  
Vol 7 (6) ◽  
pp. 478
Author(s):  
Xue-Wei Wang ◽  
Tom W. May ◽  
Shi-Liang Liu ◽  
Li-Wei Zhou

Hyphodontia sensu lato, belonging to Hymenochaetales, accommodates corticioid wood-inhabiting basidiomycetous fungi with resupinate basidiocarps and diverse hymenophoral characters. Species diversity of Hyphodontia sensu lato has been extensively explored worldwide, but in previous studies the six accepted genera in Hyphodontia sensu lato, viz. Fasciodontia, Hastodontia, Hyphodontia, Kneiffiella, Lyomyces and Xylodon were not all strongly supported from a phylogenetic perspective. Moreover, the relationships among these six genera in Hyphodontia sensu lato and other lineages within Hymenochaetales are not clear. In this study, we performed comprehensive phylogenetic analyses on the basis of multiple loci. For the first time, the independence of each of the six genera receives strong phylogenetic support. The six genera are separated in four clades within Hymenochaetales: Fasciodontia, Lyomyces and Xylodon are accepted as members of a previously known family Schizoporaceae, Kneiffiella and Hyphodontia are, respectively, placed in two monotypic families, viz. a previous name Chaetoporellaceae and a newly introduced name Hyphodontiaceae, and Hastodontia is considered to be a genus with an uncertain taxonomic position at the family rank within Hymenochaetales. The three families emerged between 61.51 and 195.87 million years ago. Compared to other families in the Hymenochaetales, these ages are more or less similar to those of Coltriciaceae, Hymenochaetaceae and Oxyporaceae, but much older than those of the two families Neoantrodiellaceae and Nigrofomitaceae. In regard to species, two, one, three and 10 species are newly described from Hyphodontia, Kneiffiella, Lyomyces and Xylodon, respectively. The taxonomic status of additional 30 species names from these four genera is briefly discussed; an epitype is designated for X. australis. The resupinate habit and poroid hymenophoral configuration were evaluated as the ancestral state of basidiocarps within Hymenochaetales. The resupinate habit mainly remains, while the hymenophoral configuration mainly evolves to the grandinioid-odontioid state and also back to the poroid state at the family level. Generally, a taxonomic framework for Hymenochaetales with an emphasis on members belonging to Hyphodontia sensu lato is constructed, and trait evolution of basidiocarps within Hymenochaetales is revealed accordingly.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Thomas Mormann

Abstract The main thesis of this paper is that Pap’s The Functional A Priori in Physical Theory and Cassirer’s Determinism and Indeterminism in Modern Physics may be conceived as two kindred accounts of a late Neo-Kantian philosophy of science. They elucidate and clarify each other mutually by elaborating conceptual possibilities and pointing out affinities of neo-Kantian ideas with other currents of 20th century’s philosophy of science, namely, pragmatism, conventionalism, and logical empiricism. Taking into account these facts, it seems not too far fetched to conjecture that under more favorable circumstances Pap could have served as a mediator between the “analytic” and “continental” tradition thereby overcoming the dogmatic dualism of these two philosophical currents that has characterized philosophy in the second half the 20th century.


Author(s):  
John Moffat

ABSTRACTThe recent attempt at a physical interpretation of non-Riemannian spaces by Einstein (1, 2) has stimulated a study of these spaces (3–8). The usual definition of a non-Riemannian space is one of n dimensions with which is associated an asymmetric fundamental tensor, an asymmetric linear affine connexion and a generalized curvature tensor. We can also consider an n-dimensional space with which is associated a complex symmetric fundamental tensor, a complex symmetric affine connexion and a generalized curvature tensor based on these. Some aspects of this space can be compared with those of a Riemann space endowed with two metrics (9). In the following the fundamental properties of this non-Riemannian manifold will be developed, so that the relation between the geometry and physical theory may be studied.


1981 ◽  
Vol 20 (1) ◽  
pp. 37-91 ◽  
Author(s):  
Scott Atran

Sign in / Sign up

Export Citation Format

Share Document