scholarly journals Fpr2 Deficiency Alleviates Diet-Induced Insulin Resistance Through Reducing Body Weight Gain and Inhibiting Inflammation Mediated by Macrophage Chemotaxis and M1 Polarization

Diabetes ◽  
2019 ◽  
Vol 68 (6) ◽  
pp. 1130-1142 ◽  
Author(s):  
Xiaofang Chen ◽  
Shu Zhuo ◽  
Tengfei Zhu ◽  
Pengle Yao ◽  
Mengmei Yang ◽  
...  
2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saira Tanweer ◽  
Tariq Mehmood ◽  
Saadia Zainab ◽  
Zulfiqar Ahmad ◽  
Muhammad Ammar Khan ◽  
...  

Purpose Innovative health-promoting approaches of the era have verified phytoceutics as one of the prime therapeutic tools to alleviate numerous health-related ailments. The purpose of this paper is to probe the nutraceutic potential of ginger flowers and leaves against hyperglycemia. Design/methodology/approach The aqueous extracts of ginger flowers and leaves were observed on Sprague Dawley rats for 8 weeks. Two parallel studies were carried out based on dietary regimes: control and hyperglycemic diets. At the end of the experimental modus, the overnight fed rats were killed to determine the concentration of glucose and insulin in serum. The insulin resistance and insulin secretions were also calculated by formulae by considering fasting glucose and fasting insulin concentrations. Furthermore, the feed and drink intakes, body weight gain and hematological analysis were also carried out. Findings In streptozotocin-induced hyperglycemic rats, the ginger flowers extract depicted 5.62% reduction; however, ginger leaves extract reduced the glucose concentration up to 7.11% (p = 0.001). Similarly, ginger flowers extract uplifted the insulin concentration up to 3.07%, while, by ginger leaves extract, the insulin value increased to 4.11% (p = 0.002). For the insulin resistance, the ginger flower showed 5.32% decrease; however, the insulin resistance was reduced to 6.48% by ginger leaves (p = 0.014). Moreover, the insulin secretion increased to 18.9% by flower extract and 21.8% by ginger leave extract (p = 0.001). The feed intake and body weight gain increased momentously by the addition of ginger flowers and leaves; however, the drink intake and hematological analysis remained non-significant by the addition of ginger parts. Originality/value Conclusively, it was revealed that leaves have more hypoglycemic potential as compared to flowers.


2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Weidong Xu ◽  
Jiayao Li ◽  
Weipeng Qi ◽  
Ye Peng

Apigenin-8-C-glucoside (vitexin), a natural phytochemical contained in hawthorn, has been reported to have versatile beneficial bioactivities, such as antioxidation, anticancer property, and adipogenesis inhibition. The present research aimed to determine the influence of vitexin on insulin resistance elicited by HFD in mice and HepG2 cells. Vitexin markedly alleviated body weight gain and improved glucose and insulin intolerance induced by HFD. Vitexin partially normalized blood glucose, cholesterol, TNF-α, and hepatic lipid content. Moreover, vitexin recovered the reduced glucose uptake induced by glucosamine. The present results indicate that vitexin prevents HFD-induced insulin resistance.


2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Gengshu Wu ◽  
Liyan Zhang ◽  
Tete Li ◽  
Gary Lopaschuk ◽  
Dennis E. Vance ◽  
...  

Previous studies demonstrated that choline supply is directly linked to high-fat-diet-induced obesity and insulin resistance in mice. The aim of this study was to evaluate if choline supply could also modulate obesity and insulin resistance caused by a genetic defect. Eight-week-old male ob/ob mice were fed for two months with either choline-deficient or choline-supplemented diet. Tissue weight including fat mass and lean mass was assessed. Intracellular signaling, plasma glucagon and insulin, and glucose and insulin tolerance tests were also investigated. The choline-deficient diet slowed body weight gain and decreased fat mass. Choline deficiency also decreased plasma glucose level and improved glucose and insulin tolerance although fatty liver was exacerbated. Increased adipose lipolytic activity, decreased plasma glucagon and reduced expression of hepatic glucagon receptor were also observed with the choline-deficient diet. Our results demonstrate that a choline-deficient diet can decrease fat mass and improve glucose tolerance in obese and diabetic mice caused by a genetic defect.


2013 ◽  
Vol 218 (1) ◽  
pp. 35-47 ◽  
Author(s):  
Charlotte Benoit ◽  
Hassina Ould-Hamouda ◽  
Delphine Crepin ◽  
Arieh Gertler ◽  
Laurence Amar ◽  
...  

Perinatal leptin impairment has long-term consequences on energy homeostasis leading to body weight gain. The underlying mechanisms are still not clearly established. We aimed to analyze the long-term effects of early leptin blockade. In this study, newborn rats received daily injection of a pegylated rat leptin antagonist (pRLA) or saline from day 2 (d2) to d13 and then body weight gain, insulin/leptin sensitivity, and expression profile of microRNAs (miRNAs) at the hypothalamic level were determined at d28, d90, or d153 (following 1 month of high-fat diet (HFD) challenge). We show that pRLA treatment predisposes rats to overweight and promotes leptin/insulin resistance in both hypothalamus and liver at adulthood. pRLA treatment also modifies the hypothalamic miRNA expression profile at d28 leading to the upregulation of 34 miRNAs and the downregulation of four miRNAs. For quantitative RT-PCR confirmation, we show the upregulation of rno-miR-10a at d28 and rno-miR-200a, rno-miR-409-5p, and rno-miR-125a-3p following HFD challenge. Finally, pRLA treatment modifies the expression of genes involved in energy homeostasis control such as UCPs and AdipoRs. In pRLA rat muscle,Ucp2/3andAdipor1/r2are upregulated at d90. In liver, pRLA treatment upregulatesAdipor1/r2following HFD challenge. These genes are known to be involved in insulin resistance and type 2 diabetes. In conclusion, we demonstrate that the impairment of leptin action in early life promotes insulin/leptin resistance and modifies the hypothalamic miRNA expression pattern in adulthood, and finally, this study highlights the potential link between hypothalamic miRNA expression pattern and insulin/leptin responsiveness.


2020 ◽  
Author(s):  
Bianca Patel ◽  
Lauryn New ◽  
Joanne C. Griffiths ◽  
Jim Deuchars ◽  
Beatrice M. Filippi

AbstractThe dorsal vagal complex (DVC) senses changes in insulin levels and controls glucose homeostasis, feeding behaviour and body weight. Three days of high-fat diet (HFD) in rats is sufficient to induce insulin resistance in the DVC and impair its ability to regulate feeding behaviour. HFD-feeding is associated with increased mitochondrial fission in the DVC and fission is regulated by dynamin-related protein 1 (Drp1). Higher Drp1 activity can inhibit insulin signalling, although the exact mechanisms controlling body weight remain elusive. Here we show that Drp1 activation in DVC leads to higher body weight in rats and Drp1 inhibition in HFD-fed rats reduced body weight gain, cumulative food intake and adipose tissue, and prevented insulin resistance. Rats expressing active Drp1 in the DVC had higher levels of inducible nitric oxide synthase (iNOS) and knockdown of iNOS in the DVC of HFD-fed rats led to a reduction in body weight gain, cumulative food intake and adipose tissue, and prevented insulin resistance. In obese insulin-resistant animals, inhibition of mitochondrial fission or DVC iNOS knockdown restored insulin sensitivity and decreased food intake, body weight and fat deposition. Finally, we show that inhibiting mitochondrial fission in DVC astrocytes is sufficient to protect rats from developing HFD-dependent insulin resistance, hyperphagia, body weight gain and fat deposition. Our study uncovers new molecular and cellular targets for brain regulation of whole-body metabolism, which could inform new strategies to combat obesity and diabetes.


2019 ◽  
Vol 10 (8) ◽  
pp. 4811-4822 ◽  
Author(s):  
Paula Aranaz ◽  
Ana Romo-Hualde ◽  
David Navarro-Herrera ◽  
María Zabala ◽  
Miguel López-Yoldi ◽  
...  

Supplementation with low doses of a cocoa extract induces metabolic benefits in the prevention of metabolic syndrome in rats, reducing body-weight gain, visceral adiposity and liver steatosis and improving insulin sensitivity and glucose tolerance.


2011 ◽  
Vol 34 (8) ◽  
pp. 1257-1263 ◽  
Author(s):  
Takahiro Hayashi ◽  
Yuriko Nozaki ◽  
Makoto Nishizuka ◽  
Masahito Ikawa ◽  
Shigehiro Osada ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document