scholarly journals Choline Deficiency Attenuates Body Weight Gain and Improves Glucose Tolerance in ob/ob Mice

2012 ◽  
Vol 2012 ◽  
pp. 1-7 ◽  
Author(s):  
Gengshu Wu ◽  
Liyan Zhang ◽  
Tete Li ◽  
Gary Lopaschuk ◽  
Dennis E. Vance ◽  
...  

Previous studies demonstrated that choline supply is directly linked to high-fat-diet-induced obesity and insulin resistance in mice. The aim of this study was to evaluate if choline supply could also modulate obesity and insulin resistance caused by a genetic defect. Eight-week-old male ob/ob mice were fed for two months with either choline-deficient or choline-supplemented diet. Tissue weight including fat mass and lean mass was assessed. Intracellular signaling, plasma glucagon and insulin, and glucose and insulin tolerance tests were also investigated. The choline-deficient diet slowed body weight gain and decreased fat mass. Choline deficiency also decreased plasma glucose level and improved glucose and insulin tolerance although fatty liver was exacerbated. Increased adipose lipolytic activity, decreased plasma glucagon and reduced expression of hepatic glucagon receptor were also observed with the choline-deficient diet. Our results demonstrate that a choline-deficient diet can decrease fat mass and improve glucose tolerance in obese and diabetic mice caused by a genetic defect.

2020 ◽  
Vol 245 (1) ◽  
pp. 13-20 ◽  
Author(s):  
Yoshinori Kanemaru ◽  
Norio Harada ◽  
Satoko Shimazu-Kuwahara ◽  
Shunsuke Yamane ◽  
Eri Ikeguchi ◽  
...  

Glucose-dependent insulinotropic polypeptide (GIP) is an incretin secreted from enteroendocine K cells after nutrient ingestion. Fat strongly induces GIP secretion, and GIP hypersecretion is involved in high-fat diet-induced obesity and insulin resistance. Aging also induces GIP hypersecretion, but its effect on body weight gain and insulin sensitivity remains unclear. In the present study, we investigated the effect of GIP on age-related body weight gain and insulin resistance using GIP-knockout homozygous (GIP−/−) and heterozygous (GIP+/−) mice, which have entirely absent and 50% reduced GIP secretion compared to wild-type (WT) mice, respectively. Under 12% fat-containing normal diet feeding condition, body weight was significantly lower in GIP−/− mice compared to that in WT and GIP+/− mice from 38 weeks of age, while there was no significant difference between WT and GIP+/− mice. Visceral and s.c. fat mass were also significantly lower in GIP−/− mice compared to those in WT and GIP+/− mice. During oral glucose tolerance test, blood glucose levels did not differ among the three groups. Insulin levels were significantly lower in GIP−/− mice than those in WT and GIP+/− mice. During insulin tolerance test, GIP−/− mice showed higher insulin sensitivity than that of WT and GIP+/− mice. Adiponectin mRNA levels were increased and leptin mRNA levels tended to be decreased in adipose tissue of GIP−/− mice. These results demonstrate that GIP is involved in age-related obesity and insulin resistance and that inhibition of GIP secretion alleviates age-related fat mass gain and insulin resistance under carbohydrate-based diet feeding condition.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Saira Tanweer ◽  
Tariq Mehmood ◽  
Saadia Zainab ◽  
Zulfiqar Ahmad ◽  
Muhammad Ammar Khan ◽  
...  

Purpose Innovative health-promoting approaches of the era have verified phytoceutics as one of the prime therapeutic tools to alleviate numerous health-related ailments. The purpose of this paper is to probe the nutraceutic potential of ginger flowers and leaves against hyperglycemia. Design/methodology/approach The aqueous extracts of ginger flowers and leaves were observed on Sprague Dawley rats for 8 weeks. Two parallel studies were carried out based on dietary regimes: control and hyperglycemic diets. At the end of the experimental modus, the overnight fed rats were killed to determine the concentration of glucose and insulin in serum. The insulin resistance and insulin secretions were also calculated by formulae by considering fasting glucose and fasting insulin concentrations. Furthermore, the feed and drink intakes, body weight gain and hematological analysis were also carried out. Findings In streptozotocin-induced hyperglycemic rats, the ginger flowers extract depicted 5.62% reduction; however, ginger leaves extract reduced the glucose concentration up to 7.11% (p = 0.001). Similarly, ginger flowers extract uplifted the insulin concentration up to 3.07%, while, by ginger leaves extract, the insulin value increased to 4.11% (p = 0.002). For the insulin resistance, the ginger flower showed 5.32% decrease; however, the insulin resistance was reduced to 6.48% by ginger leaves (p = 0.014). Moreover, the insulin secretion increased to 18.9% by flower extract and 21.8% by ginger leave extract (p = 0.001). The feed intake and body weight gain increased momentously by the addition of ginger flowers and leaves; however, the drink intake and hematological analysis remained non-significant by the addition of ginger parts. Originality/value Conclusively, it was revealed that leaves have more hypoglycemic potential as compared to flowers.


2007 ◽  
Vol 97 (2) ◽  
pp. 389-398 ◽  
Author(s):  
Patricia Pérez-Matute ◽  
Nerea Pérez-Echarri ◽  
J. Alfredo Martínez ◽  
Amelia Marti ◽  
María J. Moreno-Aliaga

n-3 PUFA have shown potential anti-obesity and insulin-sensitising properties. However, the mechanisms involved are not clearly established. The aim of the present study was to assess the effects of EPA administration, one of the n-3 PUFA, on body-weight gain and adiposity in rats fed on a standard or a high-fat (cafeteria) diet. The actions on white adipose tissue lipolysis, apoptosis and on several genes related to obesity and insulin resistance were also studied. Control and cafeteria-induced overweight male Wistar rats were assigned into two subgroups, one of them daily received EPA ethyl ester (1 g/kg) for 5 weeks by oral administration. The high-fat diet induced a very significant increase in both body weight and fat mass. Rats fed with the cafeteria diet and orally treated with EPA showed a marginally lower body-weight gain (P = 0·09), a decrease in food intake (P < 0·01) and an increase in leptin production (P < 0·05). EPA administration reduced retroperitoneal adipose tissue weight (P < 0·05) which could be secondary to the inhibition of the adipogenic transcription factor PPARγ gene expression (P < 0·001), and also to the increase in apoptosis (P < 0·05) found in rats fed with a control diet. TNFα gene expression was significantly increased (P < 0·05) by the cafeteria diet, while EPA treatment was able to prevent (P < 0·01) the rise in this inflammatory cytokine. Adiposity-corrected adiponectin plasma levels were increased by EPA. These actions on both TNFα and adiponectin could explain the beneficial effects of EPA on insulin resistance induced by the cafeteria diet.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Weidong Xu ◽  
Jiayao Li ◽  
Weipeng Qi ◽  
Ye Peng

Apigenin-8-C-glucoside (vitexin), a natural phytochemical contained in hawthorn, has been reported to have versatile beneficial bioactivities, such as antioxidation, anticancer property, and adipogenesis inhibition. The present research aimed to determine the influence of vitexin on insulin resistance elicited by HFD in mice and HepG2 cells. Vitexin markedly alleviated body weight gain and improved glucose and insulin intolerance induced by HFD. Vitexin partially normalized blood glucose, cholesterol, TNF-α, and hepatic lipid content. Moreover, vitexin recovered the reduced glucose uptake induced by glucosamine. The present results indicate that vitexin prevents HFD-induced insulin resistance.


1989 ◽  
Vol 23 (4) ◽  
pp. 328-332 ◽  
Author(s):  
H. Van Herck ◽  
J. P. Van Wouwe ◽  
M. Veldhuizen ◽  
V. Baumans ◽  
F. R. Stafleu ◽  
...  

In order to gain experience about the detection of adverse effects during a scientific procedure, we carried out a clinical examination of rats with zinc deficiency. In weanling rats fed a zinc-deficient diet (30 μmol zinc/kg) for 10 days, the mean tibial concentration of zinc was reduced by 53% and body weight gain by 73070 when compared with rats fed a diet containing an adequate amount of zinc (150 μmol zinc/kg). In a small open field on day 9 of the experiment, the deficient rats more frequently displayed the posture standing upright with elevated heels. On day 10 of the experiment a clinical examination was carried out at random and 'blind' by three independent assessors. Out of 20 variables scored quantitatively on each individual animal, only body size differed between normal and deficient rats. Other classical signs of zinc deficiency, such as alopecia, dermatitis and diarrhoea, were not detected. It is concluded that in this rat model of zinc deficiency, no evidence for extreme discomfort can be demonstrated.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Philip H. Jones ◽  
Brian Deng ◽  
Jessica Winkler ◽  
Arin L. Zirnheld ◽  
Sarah Ehringer ◽  
...  

Abstract Overweight children and adolescents are at high risk for adult and late life obesity. This report investigates some underlying mechanisms contributing to obesity during early life in an animal model. We generated a strain of transgenic mice, cU2, overexpressing human microRNA 34c, a microRNA functionally implicated in adipogenesis. Male and female cU2 mice exhibit significant weight gain, accompanied by marked increase in abdominal fat mass and metabolic abnormalities, including reduction of both glucose clearance rate and insulin sensitivity, as early as two months of age. Adipogenesis derailment at this early age is suggested by decreased expression of adiponectin, the fat mass and obesity-associated gene, and the adiponectin receptor R1, coupled with a reduction of the brown fat biomarker PAT2 and the adipogenesis inhibitor SIRT1. Notably, adiponectin is an important adipokine and an essential regulator of glucose and fatty acid homeostasis. cU2 mice may provide a crucial animal model for investigating the role of miR-34c in early onset insulin resistance and visceral fat mass increase, contributing to accelerated body weight gain and metabolic disorders. Intervention in this dysregulation may open a new preventive strategy to control early-life weight gain and abnormal insulin resistance, and thus prevalent adult and late life obesity.


Author(s):  
Malika Hamdiken ◽  
Zine Kechrid

Objective: Oxidative stress which comes from hyperglycemia, it accelerates the development of cellular and vascular damage complications in diabetes, but the antioxidants may play a beneficial role in its prevention. Several plants extracts have an antioxidant activity and the ability to reduce oxidative stress in diabetes. Thus this study was conducted to investigate the effect of Beta vulgaris var cicla extract on zinc status, glucose concentration and antioxidant parameters in streptozotocin-diabetic rats fed zinc deficiency diet.Methods: Twenty-eight male albino (Wistar) rats were divided into four groups: two groups fed a zinc-sufficient diet one non-diabetic and the other diabetic, while the others two diabetic groups were fed a zinc-deficient diet, one non-treated group and the other treated with the extract of Beta vulgaris var cicla. After 21 d of dietary manipulation, fasting animals were scarified. Blood glucose, tissues zinc (femur, liver, kidney), malondialdehyde (MDA), reduced glutathione (GSH), glutathione peroxidase (GSH-Px) and glutathione-S-transferase (GST) were evaluated.Results: Body weight gain of zinc-deficient diabetic animals was lower than that of zinc-adequate diabetic animals. It was noticed also that inadequate dietary zinc intake increased glucose and MDA levels. In addition, zinc deficiency diet led to a decrease in zinc tissues, GSH concentration both GST and GSH-Px activities. However, Oral administration of Beta vulgaris extract significantly decreased both serum glucose and MDA (p<0.001) levels, with a significant increase in body weight gain (p<0.001), GSH concentration (p<0.05, P<0.001), GST (p<0.05, p<0.001) and GSH-Px (p<0.001) activities.Conclusion: The present study showed that Beta vulgaris var cicla supplementation presumably acting as an antioxidant, and it can be a natural source for the reduction of diabetes development caused by zinc deficiency.


Sign in / Sign up

Export Citation Format

Share Document