scholarly journals Effect of Photoactivation Timing on the Mechanical Properties of Resin Cements and Bond Strength of Fiberglass Post to Root Dentin

2015 ◽  
Vol 40 (5) ◽  
pp. E206-E221 ◽  
Author(s):  
RD Pereira ◽  
ADCM Valdívia ◽  
AA Bicalho ◽  
SD Franco ◽  
D Tantbirojn ◽  
...  

SUMMARY Objectives This study tested the hypothesis that photoactivation timing and resin cement affect mechanical properties and bond strength of fiberglass posts to root dentin at different depths. Methods Fiberglass posts (Exacto, Angelus) were luted with RelyX Unicem (3M ESPE), Panavia F 2.0 (Kuraray), or RelyX ARC (3M ESPE) using three photoactivation timings: light curing immediately, after three minutes, or after five minutes. Push-out bonding strength, PBS (n=10) was measured on each root region (coronal, middle, apical). The elastic modulus (E) and Vickers hardness (VHN) of the cement layer along the root canal were determined using dynamic indentation (n=5). A strain-gauge test was used to measure post-gel shrinkage of each cement (n=10). Residual shrinkage stress was assessed with finite element analysis. Data were analyzed with two-way analysis of variance in a split-plot arrangement and a Tukey test (α=0.05). Multiple linear regression analysis was used to determine the influence of study factors. Results The five-minute delay photoactivation timing significantly increased the PBS for all resin cements evaluated. The PBS decreased significantly from coronal to apical root canal regions. The mean values for E and VHN increased significantly with the delayed photoactivation for RelyX Unicem and decreased from coronal to apical root regions for all resin cements with the immediate-curing timing. Conclusions The PBS of fiber posts to root dentin, E, and VHN values were affected by the root canal region, photoactivation timing, and resin cement type. Shrinkage stress values decreased gradually with delayed photoactivation for all the cements.

2018 ◽  
Vol 43 (2) ◽  
pp. E72-E80 ◽  
Author(s):  
M Durski ◽  
M Metz ◽  
G Crim ◽  
S Hass ◽  
R Mazur ◽  
...  

SUMMARY The purpose of this study was to evaluate the push-out bond strength of two different adhesive cements (total etch and self-adhesive) for glass fiber post (GFP) cementation in simulated, long-term service (thermocycling) when the root canal is treated with chlorhexidine before cementation. One hundred twenty premolar specimens with a single root canal were selected, endodontically treated, and shaped for GFP cementation (n=120). The specimens were randomly placed into one of 12 groups (10 specimens each) according to cement (T = total-etch RelyX ARC or S = self-adhesive RelyX Unicem), treatment with chlorhexidine (N or Y: without or with), and number of thermal cycles (00, 20, or 40: 0, or 20,000 or 40,000 cycles): 1. TN00, 2. TN20, 3. TN40, 4. TY00, 5. TY20, 6. TY40, 7. SN00, 8. SN20, 9. SN40, 10. SY00, 11. SY20, 12. SY40. The root of each specimen was cut perpendicular to the vertical axis, yielding six 1.0 mm-thick sections. A push-out bond strength test was performed followed by statistical analysis using a factorial analysis of variance. Pairwise comparisons of significant factor interactions were adjusted using the Tukey test. Significant differences of push-out bond strengths were found in the four main effects (resin cement [p<0.0001], treatment with chlorhexidine [p<0.0001], number of cycles [p<0.0001], and root third [p<0.0001]) and all interactions (p<0.05 for all). Both resin cements produced higher bond strength in the cervical third followed by the middle third, and lower values were detected in the apical third. Additionally, the results suggest that the use of an additional disinfection treatment with chlorhexidine before the cement application produced the highest push-out bond strength regardless of root third. Further, the thermocycling simulation decreased the bond strength for both resin cements long-term when the chlorhexidine was not applied before cementation. However, when the root canal was treated with chlorhexidine and the fiber post was cemented with self-adhesive cement, the bond strength increased after 0, 20,000 and 40,000 cycles.


2018 ◽  
Vol 17 ◽  
pp. e181358
Author(s):  
Julio Cezar Chidoski-Filho ◽  
Giovana Mongruel Gomes ◽  
Bruna Fortes Bittencourt ◽  
Alessandra Reis ◽  
Osnara Maria Mongruel Gomes ◽  
...  

Aim: The objective is to evaluate the influence of different burs used to prepare the root canal space and acid ultrasonic agitation on bond strength (BS) between glass fiber posts (GFP) and root dentin. Methods: After endodontic treatment, the root canal spaces of 36 extracted human canines were prepared, according to the rotary instrument used (n=18): carbide bur (CB), provided by the post manufacturer and a diamond bur (DB). In both groups, the fiber posts were cemented with the adhesive system Ambar and resin cement Allcem, following the manufacturer`s instructions. Previously to the cementation procedures, the groups were subdivided into 2 groups (n=9), according to the phosphoric acid application mode: conventional etching (CE) and active etching (AE), performed by ultrasonic tip, both for 15s. Before the cementation procedures and after the acid application, 1 root of each group was randomly selected for ultrastructural morphological evaluation by SEM. After 1 week of the cementation, 8 specimens per group were transversely sectioned into six 1-mm thick slices, the root canal regions (cervical, medium and apical) were identified and the push-out test was performed to evaluate BS. Data were analyzed by 3-way ANOVA and Tukey test (α=0.05). Results: The results showed that the cross-product interaction of all factors was significant (P=0.035). Higher bond strength values were obtained when a DB with conventional etching, instead of CB, was used to prepare the root post space. Conclusion: It may be concluded that the use of diamond burs with conventional etching yields high BS values in all root canal thirds.


2013 ◽  
Vol 14 (4) ◽  
pp. 675-680
Author(s):  
Khalil Aleisa

ABSTRACT Statement of the problem Post retention is crucial factor in restoration survival. Posts are commonly failed due to loss of retention. It is unknown which luting agents would provide the maximum bond strength for Locator overdenture posts. Aim The aim of this study was to evaluate the bond retentive strengths of Locator overdenture posts cemented with 7 luting agents. Materials and methods One hundred and five single rooted human teeth were decoronated and randomly assigned to 7 groups (n = 15). Post spaces were prepared with Locator post drills to the depth of 6 mm. The Locator posts were cemented with Variolink II, RelyX ARC, Multilink N, RelyX Unicem, ParaCore, or MultiCore Flow resin luting agents. Zinc phosphate cement was served as control group. Specimens were stored in water at 37°C for 24 hours. Each specimen was loaded in tension in an Instron universal testing machine. The maximum force required to dislodge each Locator post was recorded. Means and standard deviations were calculated and data were statistically analyzed with one-way analysis of variance (ANOVA). Results The highest mean bond strength value for Locator posts was recorded for MultiCore® Flow group (mean = 550.1 N), while the lowest mean value was for RelyX Unicem™ resin cement group (mean = 216.8 N). A statistically significant difference in mean locator overdenture post bond strength was observed between the 7 cement types (p < 0.0001). ParaCore™ and MultiCore® Flow groups had significantly higher bond strength than all other groups, but they were not differed from each other. Conclusion Bond strength of Locator overdenture posts were influenced by the type of luting agents. MultiCore Flow and ParaCore resin cements offered the greatest retention. Clinical significance The type of luting agents had a significant effect on the retention of Locator posts. The use of Core buildup resin cements as luting agent with Locator post demonstrated the greatest retention. How to cite this article Aleisa K. Bond Strength of Overdenture Locator Posts Cemented with Seven Luting Agents. J Contemp Dent Pract 2013;14(4):675-680.


2014 ◽  
Vol 25 (4) ◽  
pp. 314-320 ◽  
Author(s):  
Andréa Dolores Correia Miranda Valdivia ◽  
Veridiana Resende Novais ◽  
Murilo de Sousa Menezes ◽  
Marina Guimarães Roscoe ◽  
Carlos Estrela ◽  
...  

This study evaluated the influence of the surface treatments of fiberglass posts on bond strength to root dentin using push-out test. Forty bovine incisor roots were endodontically treated. The surface of the fiberglass posts (Exacto #2, Angelus) were treated using 4 different protocols (n=10): Control - 70% ethanol for 1 min; 37% phosphoric acid for 1 min; 10% hydrofluoric acid for 1 min; and 24% hydrogen peroxide for 1 min. After a silane coupling agent was applied for 1 min and all posts were cemented using self-adhesive resin cement (RelyX Unicem, 3M-ESPE). The roots were sectioned and two 1-mm-thick slices were obtained from each third: cervical, middle and apical. The specimens were subjected to the push-out test with a crosshead speed of 0.5 mm/min. Data were analyzed by repeated measures ANOVA followed by Tukey's HSD tests (=0.05). The surface treatment (p<0.001) and root third region (p=0.007) factors were significant. The retention to root canal was affected by surface treatment type. The post surface treatment with 24% hydrogen peroxide for 1 min yielded significantly higher bond strength when the fiberglass posts were cemented with RelyX Unicem.


2015 ◽  
Vol 40 (5) ◽  
pp. 524-532 ◽  
Author(s):  
DP Lise ◽  
J Perdigão ◽  
A Van Ende ◽  
O Zidan ◽  
GC Lopes

SUMMARY Objectives To investigate the effect of hydrofluoric acid (HF) etching, silane solution, and adhesive system application on the microshear bond strength (μSBS) of lithium disilicate glass-ceramic (LD) to three resin cements. Materials and Methods Circular bonding areas were delimited on the lithium disilicate surfaces using a perforated adhesive tape. Specimens were assigned to 18 subgroups (n=12) according to surface treatment: NT = no treatment; HF = 4.8% HF for 20 seconds; silane solution: (1) no silane; (2) Monobond Plus, a silane/10-methacryloyloxydecyl dihydrogen phosphate solution for 60 seconds; (3) Monobond Plus+ExciTE F DSC, a dual-cure adhesive; and resin cement: (1) Variolink II, a bisphenol A diglycidyl ether dimethacrylate (bis-GMA)–based, hand-mixed, dual-cure resin cement; (2) Multilink Automix, a bis-GMA–based, auto-mixed, dual-cure resin cement; (3) RelyX Unicem 2, a self-adhesive, auto-mixed, dual-cure resin cement. Tygon tubes (Ø=0.8 mm) were used as cylinder matrices for resin cement application. After 24 hours of water storage, the specimens were submitted to the μSBS test. Mode of failure was evaluated under an optical microscope and classified as adhesive, mixed, cohesive in resin cement, or cohesive in ceramic. Data were statistically analyzed with three-way analysis of variance and Dunnett test (p&lt;0.05). Results When means were pooled for the factor surface treatment, HF resulted in a significantly higher μSBS than did NT (p&lt;0.0001). Regarding the use of a silane solution, the mean μSBS values obtained with Monobond Plus and Monobond Plus+ExciTE F DSC were not significantly different but were higher than those obtained with no silane (p&lt;0.001). Considering the factor resin cement, Variolink II resulted in a significantly higher mean μSBS than did RelyX Unicem 2 (p&lt;0.03). The mean μSBS for Multilink Automix was not significantly different from those of Variolink II and RelyX Unicem 2. According to Dunnett post hoc test (p&lt;0.05), there was no significant difference in μSBS between the different resin cements for HF-etched and silanized (with or without adhesive application) LD surfaces. Conclusion LD may benefit from pretreatment of the inner surface with HF and silanization, regardless of the resin cement used.


2012 ◽  
Vol 23 (3) ◽  
pp. 218-222 ◽  
Author(s):  
Marina Di Francescantonio ◽  
Marcelo Tavares de Oliveira ◽  
Luiz Gustavo Dias Daroz ◽  
Guilherme Elias Pessanha Henriques ◽  
Marcelo Giannini

The purpose of this study was to evaluate the effects of adhesive primer applications on the bond strength of resin cements to cast titanium. Four adhesive primers - Metaltite, Metal Primer II, Alloy Primer and Ceramic Primer - and their respective resin cements - Bistite II DC, Link Max, Panavia F 2.0, RelyX Unicem and RelyX ARC - were tested. Cast plates were prepared from titanium ingots (n=6 specimens/cement) and had their surfaces airborne-particle abraded with Al2O3 (50 μ m). Three resin cement cylinders were built on each bonded titanium surface, using a cylindrical translucent tubing mold and were subjected to micro-shear testing. Data were analyzed statistically by two-way ANOVA and Tukey's post-hoc test (α=0.05). The application of Metal Primer II and Ceramic Primer resulted in significant higher bond strength for Link Max and RelyX Unicem resin cements, respectively, than nonuse of adhesive primers. Panavia F 2.0 and RelyX ARC yielded high bond strength means with or without adhesive primers. The use of adhesive primers might increase the bond strength to cast titanium depending on the resin cement used.


2012 ◽  
Vol 37 (5) ◽  
pp. 548-556 ◽  
Author(s):  
E Baena ◽  
MV Fuentes ◽  
MA Garrido ◽  
J Rodríguez ◽  
L Ceballos

SUMMARY Purpose To compare the microhardness of several dual-cure, self-adhesive resin cements used to lute fiber posts at 24 hours and seven days after cementation. Methods Bovine incisors were selected to lute 15 fiber posts that were 12 mm long (FRC Postec Plus size 3, Ivoclar-Vivadent). Five resin cements were tested: Multilink Automix (Ivoclar-Vivadent), without light-curing, and the self-adhesive resin cements Maxcem Elite (Kerr), RelyX Unicem (3M ESPE), G-Cem (GC), and Smartcem 2 (Dentsply), which were light-cured for 40 seconds (LED Bluephase, Ivoclar-Vivadent). Each root was embedded in chemically cured acrylic resin and stored at 37°C for 24 hours. The roots were transversally sectioned into nine specimens that were each 1 mm thick, with three specimens corresponding to each root third. Indentations (100g, 30 seconds) were performed on each section in the resin cement, at 24 hours and seven days after cementation, using a Vickers digital microdurometer (Buehler). Data were analyzed by two-way analysis of variance, Student-Newman-Keuls test, and paired t-test (p&lt;0.05). Results A significant influence was found (p&lt;0.05) for the resin cement evaluated, the root third, and their interactions on microhardness values at 24 hours and seven days after post cementation. RelyX Unicem and G-Cem exhibited the highest microhardness values, whereas Multilink Automix presented the lowest. All resin cements suffered a decrease in microhardness according to root canal depth, with the exception of G-Cem and Multilink Automix at 24 hours and Smartcem 2 after seven days. After seven days, the evaluated resin cements showed a significant increase in microhardness values, with the exception of Maxcem Elite and Smartcem 2 at the coronal third. Conclusions Microhardness of the self-adhesive resin cements when used to lute fiber posts was material-dependent and higher values were obtained in the coronal third, revealing their sensitivity to light irradiation. More information regarding the polymerization reaction of these cements is warranted. According to the current results, microhardness values were significantly higher one week after post luting.


2013 ◽  
Vol 24 (4) ◽  
pp. 340-343 ◽  
Author(s):  
Gabriela Campos Mesquita ◽  
Crisnicaw Verissimo ◽  
Luis Henrique Araujo Raposo ◽  
Paulo Cesar Freitas Santos-Filho ◽  
Aderito Soares da Mota ◽  
...  

The cure time of endodontic sealers may influence the bond strength of fiber posts to root dentin. Forty teeth were selected and endodontically filled using calcium hydroxide cement and then divided into 2 groups according to the time elapsed between endodontic filling and post luting (n = 20): Immediately - glass fiber post luting immediately after endodontic filling; and Delayed - post luting performed 7 days after endodontic filling. The roots were also subdivided according to resin cement used for post luting (RelyX ARC and RelyX Unicem). The specimens were stored at 37°C for 24 h and sectioned in six 1-mm-thick slices from cervical, middle and apical thirds. The slice specimens were submitted to a push-out test at a crosshead speed of 0.5 mm/min, and the bond strength values obtained (MPa) were submitted to two-way ANOVA in a split-plot arrangement and Tukey's test (α=0.05). For both RelyX ARC and Unicem, the bond strength was significantly higher when the posts were cemented 7 days after the endodontic treatment. RelyX Unicem showed significantly higher bond strength values than RelyX ARC for both cementation periods. It was concluded that post luting should be made after the complete setting of the root canal sealer. Self-adhesive resin cement should be preferred for fiber post luting.


2012 ◽  
Vol 37 (1) ◽  
pp. 80-86 ◽  
Author(s):  
LR Calixto ◽  
MC Bandéca ◽  
V Clavijo ◽  
MF Andrade ◽  
LGeraldo Vaz ◽  
...  

Clinical Relevance The use of self-adhesive resin cements is an option for bonding fiber-reinforced composite posts to root canal dentin. Traditional resin cements apparently provide higher bond strengths than self-etch resin cements. Because of this, the bond strength of self-adhesive resin cements to root dentin should be evaluated.


2012 ◽  
Vol 37 (4) ◽  
pp. 397-405 ◽  
Author(s):  
K Bitter ◽  
J Perdigão ◽  
M Exner ◽  
K Neumann ◽  
AM Kielbassa ◽  
...  

SUMMARY The aim of this study was to investigate the effect of thermomechanical loading (TML) on the bond strength of fiber posts luted with three different resin cements. Sixty-six extracted human anterior teeth were endodontically treated and restored with fiber posts (RelyX Fiber Posts, 3M ESPE) using three commercially available resin cements and three corresponding core build-up materials (n=22 each): Panavia F 2.0/Clearfil DC Core Automix (Kuraray), Variolink II/Multicore Flow (Ivoclar Vivadent), and RelyX Unicem/Filtek Z250 (3M ESPE). Twelve specimens of each group received all-ceramic crowns and were subjected to TML. The other 10 specimens were stored in saline solution for 24 hours. The roots were sectioned and bond strength was measured using a push-out test. Adhesive interfaces of two specimens of each group subjected to TML were analyzed using field emission scanning electron microscopy (FESEM). Bond strengths of fiber posts were significantly affected by the type of resin cement (p&lt;0.0005) and TML (p&lt;0.0005; two-way analysis of variance). TML significantly reduced bond strengths for all materials ((6.0 (6.2) MPa)) compared with initial bond strengths ((14.9 (10.4) MPa)). RelyX Unicem resulted in significantly higher bond strengths before ((18.3 (10.3) MPa)) and after TML ((9.8 (7.5) MPa)) compared with the other materials (p&lt;0.0005; Tukey HSD). Using FESEM, Variolink II and Panavia F demonstrated a hybrid layer partly detached from the underlying resin cement, whereas no hybrid layer was observed for RelyX Unicem. The decrease in bond strength after TML suggests that retention of fiber posts may be reduced after clinical function. Therefore, endodontically treated teeth that are restored using fiber posts may benefit from additional reinforcement via coronal restorations using adequate ferrules and/or adhesive techniques.


Sign in / Sign up

Export Citation Format

Share Document