scholarly journals EN 17650 – The new standard for digital preservation of cinematographic works

2021 ◽  
Vol 2021 (1) ◽  
pp. 43-46
Author(s):  
Siegfried Foessel ◽  
Heiko Sparenberg

EN 17650 is a proposed new European Standard for the digital preservation of cinematographic works. It allows organizing of content in a systematic way, the so called Cinema Preservation Package (CPP). The standard defines methods to store content in physical and logical structures and describes relationships and metadata for its components. The CPP uses existing XML schemes, in particular METS, EBUCore and PREMIS to store structural, descriptive, technical and provenance metadata. METS XML files with their core metadata contain physical and logical structures of the content, hash values and UUIDs to ensure data integrity and links to external metadata files to enrich the content with additional information. The content itself is stored based on existing public and industry standards, avoiding unnecessary conversion steps. The paper explains the concepts behind the new standard and specifies the usage and combinations of existing schemes with newly introduced metadata parameters.

Author(s):  
Ioannis Bardakis ◽  
Octavian Niculita ◽  
Peter Wallace

The process of generating high quality data for the test and evaluation of diagnostic and prognostic algorithms is still of high importance to the Prognostics and Health Management (PHM) research community. To support these efforts a testbed has been designed, manufactured and commissioned. It has specifically been designed in order to replicate several component degradation faults with high accuracy and high repeatability. This paper documents the design, requirements and the data integrity elements of this benchmark hydraulic system. This document consolidates the process of designing diagnostics testbeds as at present there is a lack of literature on how diagnostics testbeds should be built and is intended to serve as a starting point and quick reference guide for engineers and researchers intending to design and develop a testbed to test and validate PHM applications. The first part of this paper highlights design requirements for all the design aspects for such testbeds with great consideration for industry standards and best practices covering the achievement of electromagnetic compatibility (EMC) and noise mitigation, as well as operators’ safety and equipment protection. The second part of the paper put great emphasis on data integrity elements of the data generated by this testbed (describing the system under healthy and faulty conditions) before it is actually used for system characterization or by diagnostics and prognostics algorithms.


2018 ◽  
Vol 8 (9) ◽  
pp. 1490 ◽  
Author(s):  
Shane Esola ◽  
Brian Wisner ◽  
Prashanth Vanniamparambil ◽  
John Geriguis ◽  
Antonios Kontsos

The research presented in this article aims to demonstrate how acoustic emission (AE) monitoring can be implemented in an industrial setting to assist with part qualification, as mandated by related industry standards. The combined structural and nondestructive evaluation method presented departs from the traditional pass/fail criteria used for part qualification, and contributes toward a multi-dimensional assessment by taking advantage of AE data recorded during structural testing. To demonstrate the application of this method, 16 composite fixed-wing-aircraft spars were tested using a structural loading sequence designed around a manufacturer-specified design limit load (DLL). Increasing mechanical loads, expressed as a function of DLL were applied in a load-unload-reload pattern so that AE activity trends could be evaluated. In particular, the widely used Felicity ratio (FR) was calculated in conjunction with specific AE data post-processing, which allowed for spar test classification in terms of apparent damage behavior. To support such analysis and to identify damage critical regions in the spars, AE activity location analysis was also employed. Furthermore, recorded AE data were used to perform statistical analysis to demonstrate how AE datasets collected during part qualification could augment testing conclusions by providing additional information as compared to traditional strength testing frequently employed e.g., in the aerospace industry. In this context, AE data post-processing is presented in conjunction with ultimate strength information, and it is generally shown that the incorporation of AE monitoring is justified in such critical part qualification testing procedures.


Information ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 310
Author(s):  
Rohit Srivastava ◽  
Ravi Tomar ◽  
Maanak Gupta ◽  
Anuj Kumar Yadav ◽  
Jaehong Park

In today’s scenario, image watermarking has been an integral part in various multimedia applications. Watermarking is the approach for adding additional information to the existing image to protect the data from modification and to provide data integrity. Frequency transform domain techniques are complex and costly and degrade the quality of the image due to less embedding of bits. The proposed work utilize the original DCT method with some modifications and applies this method on frequency bands of DWT. Furthermore, the output is used in combination with a pixel modification method for embedding and extraction. The proposed outcome is the improvement of performance achieved in terms of time, imperceptibility, and robustness.


1979 ◽  
Vol 46 ◽  
pp. 368
Author(s):  
Clinton B. Ford

A “new charts program” for the Americal Association of Variable Star Observers was instigated in 1966 via the gift to the Association of the complete variable star observing records, charts, photographs, etc. of the late Prof. Charles P. Olivier of the University of Pennsylvania (USA). Adequate material covering about 60 variables, not previously charted by the AAVSO, was included in this original data, and was suitably charted in reproducible standard format.Since 1966, much additional information has been assembled from other sources, three Catalogs have been issued which list the new or revised charts produced, and which specify how copies of same may be obtained. The latest such Catalog is dated June 1978, and lists 670 different charts covering a total of 611 variables none of which was charted in reproducible standard form previous to 1966.


Author(s):  
G. Lehmpfuhl

Introduction In electron microscopic investigations of crystalline specimens the direct observation of the electron diffraction pattern gives additional information about the specimen. The quality of this information depends on the quality of the crystals or the crystal area contributing to the diffraction pattern. By selected area diffraction in a conventional electron microscope, specimen areas as small as 1 µ in diameter can be investigated. It is well known that crystal areas of that size which must be thin enough (in the order of 1000 Å) for electron microscopic investigations are normally somewhat distorted by bending, or they are not homogeneous. Furthermore, the crystal surface is not well defined over such a large area. These are facts which cause reduction of information in the diffraction pattern. The intensity of a diffraction spot, for example, depends on the crystal thickness. If the thickness is not uniform over the investigated area, one observes an averaged intensity, so that the intensity distribution in the diffraction pattern cannot be used for an analysis unless additional information is available.


Author(s):  
Eva-Maria Mandelkow ◽  
Eckhard Mandelkow ◽  
Joan Bordas

When a solution of microtubule protein is changed from non-polymerising to polymerising conditions (e.g. by temperature jump or mixing with GTP) there is a series of structural transitions preceding microtubule growth. These have been detected by time-resolved X-ray scattering using synchrotron radiation, and they may be classified into pre-nucleation and nucleation events. X-ray patterns are good indicators for the average behavior of the particles in solution, but they are difficult to interpret unless additional information on their structure is available. We therefore studied the assembly process by electron microscopy under conditions approaching those of the X-ray experiment. There are two difficulties in the EM approach: One is that the particles important for assembly are usually small and not very regular and therefore tend to be overlooked. Secondly EM specimens require low concentrations which favor disassembly of the particles one wants to observe since there is a dynamic equilibrium between polymers and subunits.


Author(s):  
Oliver C. Wells

The low-loss electron (LLE) image in the scanning electron microscope (SEM) is useful for the study of uncoated photoresist and some other poorly conducting specimens because it is less sensitive to specimen charging than is the secondary electron (SE) image. A second advantage can arise from a significant reduction in the width of the “penetration fringe” close to a sharp edge. Although both of these problems can also be solved by operating with a beam energy of about 1 keV, the LLE image has the advantage that it permits the use of a higher beam energy and therefore (for a given SEM) a smaller beam diameter. It is an additional attraction of the LLE image that it can be obtained simultaneously with the SE image, and this gives additional information in many cases. This paper shows the reduction in penetration effects given by the use of the LLE image.


2000 ◽  
Vol 5 (2) ◽  
pp. 3-3
Author(s):  
Christopher R. Brigham ◽  
James B. Talmage

Abstract Lesions of the peripheral nervous system (PNS), whether due to injury or illness, commonly result in residual symptoms and signs and, hence, permanent impairment. The AMA Guides to the Evaluation of Permanent Impairment (AMA Guides) describes procedures for rating upper extremity neural deficits in Chapter 3, The Musculoskeletal System, section 3.1k; Chapter 4, The Nervous System, section 4.4 provides additional information and an example. The AMA Guides also divides PNS deficits into sensory and motor and includes pain within the former. The impairment estimates take into account typical manifestations such as limited motion, atrophy, and reflex, trophic, and vasomotor deficits. Lesions of the peripheral nervous system may result in diminished sensation (anesthesia or hypesthesia), abnormal sensation (dysesthesia or paresthesia), or increased sensation (hyperesthesia). Lesions of motor nerves can result in weakness or paralysis of the muscles innervated. Spinal nerve deficits are identified by sensory loss or pain in the dermatome or weakness in the myotome supplied. The steps in estimating brachial plexus impairment are similar to those for spinal and peripheral nerves. Evaluators should take care not to rate the same impairment twice, eg, rating weakness resulting from a peripheral nerve injury and the joss of joint motion due to that weakness.


Sign in / Sign up

Export Citation Format

Share Document