Estimation and Correction of Geometric Distortion in Pushbroom Hyperspectral System for Imaging Art Paintings

2016 ◽  
Vol 2016 (12) ◽  
pp. 1-4 ◽  
Author(s):  
Sony George ◽  
Jon Yngve Hardeberg
Author(s):  
W.J. de Ruijter ◽  
M.R. McCartney ◽  
David J. Smith ◽  
J.K. Weiss

Further advances in resolution enhancement of transmission electron microscopes can be expected from digital processing of image data recorded with slow-scan CCD cameras. Image recording with these new cameras is essential because of their high sensitivity, extreme linearity and negligible geometric distortion. Furthermore, digital image acquisition allows for on-line processing which yields virtually immediate reconstruction results. At present, the most promising techniques for exit-surface wave reconstruction are electron holography and the recently proposed focal variation method. The latter method is based on image processing applied to a series of images recorded at equally spaced defocus.Exit-surface wave reconstruction using the focal variation method as proposed by Van Dyck and Op de Beeck proceeds in two stages. First, the complex image wave is retrieved by data extraction from a parabola situated in three-dimensional Fourier space. Then the objective lens spherical aberration, astigmatism and defocus are corrected by simply dividing the image wave by the wave aberration function calculated with the appropriate objective lens aberration coefficients which yields the exit-surface wave.


Author(s):  
W.J. de Ruijter ◽  
Sharma Renu

Established methods for measurement of lattice spacings and angles of crystalline materials include x-ray diffraction, microdiffraction and HREM imaging. Structural information from HREM images is normally obtained off-line with the traveling table microscope or by the optical diffractogram technique. We present a new method for precise measurement of lattice vectors from HREM images using an on-line computer connected to the electron microscope. It has already been established that an image of crystalline material can be represented by a finite number of sinusoids. The amplitude and the phase of these sinusoids are affected by the microscope transfer characteristics, which are strongly influenced by the settings of defocus, astigmatism and beam alignment. However, the frequency of each sinusoid is solely a function of overall magnification and periodicities present in the specimen. After proper calibration of the overall magnification, lattice vectors can be measured unambiguously from HREM images.Measurement of lattice vectors is a statistical parameter estimation problem which is similar to amplitude, phase and frequency estimation of sinusoids in 1-dimensional signals as encountered, for example, in radar, sonar and telecommunications. It is important to properly model the observations, the systematic errors and the non-systematic errors. The observations are modelled as a sum of (2-dimensional) sinusoids. In the present study the components of the frequency vector of the sinusoids are the only parameters of interest. Non-systematic errors in recorded electron images are described as white Gaussian noise. The most important systematic error is geometric distortion. Lattice vectors are measured using a two step procedure. First a coarse search is obtained using a Fast Fourier Transform on an image section of interest. Prior to Fourier transformation the image section is multiplied with a window, which gradually falls off to zero at the edges. The user indicates interactively the periodicities of interest by selecting spots in the digital diffractogram. A fine search for each selected frequency is implemented using a bilinear interpolation, which is dependent on the window function. It is possible to refine the estimation even further using a non-linear least squares estimation. The first two steps provide the proper starting values for the numerical minimization (e.g. Gauss-Newton). This third step increases the precision with 30% to the highest theoretically attainable (Cramer and Rao Lower Bound). In the present studies we use a Gatan 622 TV camera attached to the JEM 4000EX electron microscope. Image analysis is implemented on a Micro VAX II computer equipped with a powerful array processor and real time image processing hardware. The typical precision, as defined by the standard deviation of the distribution of measurement errors, is found to be <0.003Å measured on single crystal silicon and <0.02Å measured on small (10-30Å) specimen areas. These values are ×10 times larger than predicted by theory. Furthermore, the measured precision is observed to be independent on signal-to-noise ratio (determined by the number of averaged TV frames). Obviously, the precision is restricted by geometric distortion mainly caused by the TV camera. For this reason, we are replacing the Gatan 622 TV camera with a modern high-grade CCD-based camera system. Such a system not only has negligible geometric distortion, but also high dynamic range (>10,000) and high resolution (1024x1024 pixels). The geometric distortion of the projector lenses can be measured, and corrected through re-sampling of the digitized image.


2002 ◽  
Vol 97 ◽  
pp. 563-568 ◽  
Author(s):  
Paul Jursinic ◽  
Robert Prost ◽  
Christopher Schultz

Object. The authors report on a new head coil into which the Leksell aluminum localization frame can be easily and securely mounted. Mechanically, the head coil interferes little with the patient. Methods. The head coil, which is for magnetic resonance (MR) imaging, is a 12-element quadrature transmitand-receive high-pass birdcage coil with a nominal operation frequency (63.86 MHz). The coil was built into a plastic housing. This new head coil minimizes patient motion and provides a 20% increase in signal/noise ratios compared with standard head coils. An MR image test phantom was mounted in the coil and this allowed quantification of image distortion due to inhomogeneities in the main magnetic field, nonlinearity in the gradient field, and paramagnetism of the aluminum headframe. There were no significant differences in geometric distortion between the new head coil and the standard coil. Conclusions. The new head coil has advantages for reducing patient movement artifacts and has a better signal/noise ratio with no reduction in geometric accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2776
Author(s):  
Kang Hyeok Choi ◽  
Changjae Kim

The fish-eye lens camera has a wide field of view that makes it effective for various applications and sensor systems. However, it incurs strong geometric distortion in the image due to compressive recording of the outer part of the image. Such distortion must be interpreted accurately through a self-calibration procedure. This paper proposes a new type of test-bed (the AV-type test-bed) that can effect a balanced distribution of image points and a low level of correlation between orientation parameters. The effectiveness of the proposed test-bed in the process of camera self-calibration was verified through the analysis of experimental results from both a simulation and real datasets. In the simulation experiments, the self-calibration procedures were performed using the proposed test-bed, four different projection models, and five different datasets. For all of the cases, the Root Mean Square residuals (RMS-residuals) of the experiments were lower than one-half pixel. The real experiments, meanwhile, were carried out using two different cameras and five different datasets. These results showed high levels of calibration accuracy (i.e., lower than the minimum value of RMS-residuals: 0.39 pixels). Based on the above analyses, we were able to verify the effectiveness of the proposed AV-type test-bed in the process of camera self-calibration.


Forests ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 464
Author(s):  
Wenjie Zhang ◽  
Tianzhong Zhao ◽  
Xiaohui Su ◽  
Baoguo Wu ◽  
Zhiqiang Min ◽  
...  

Stem analysis is an essential aspect in forestry investigation and forest management, as it is a primary method to study the growth law of trees. Stem analysis requires measuring the width and number of tree rings to ensure the accurate measurement, expand applicable tree species, and reduce operation cost. This study explores the use of Open Source Computer Vision Library (Open CV) to measure the ring radius of analytic wood disk digital images, and establish a regression equation of ring radius based on image geometric distortion correction. Here, a digital camera was used to photograph the stem disks’ tree rings to obtain digital images. The images were preprocessed with Open CV to measure the disk’s annual ring radius. The error correction model based on the least-square polynomial fitting method was established for digital image geometric distortion correction. Finally, a regression equation for tree ring radius based on the error correction model was established. Through the above steps, click the intersection point between the radius line and each ring to get the pixel distance from the ring to the pith, then the size of ring radius can be calculated by the regression equation of ring radius. The study’s method was used to measure the digital image of the Chinese fir stem disk and compare it with the actual value. The results showed that the maximum error of this method was 0.15 cm, the average error was 0.04 cm, and the average detection accuracy reached 99.34%, which met the requirements for measuring the tree ring radius by stem disk analysis. This method is simple, accurate, and suitable for coniferous and broad-leaved species, which allows researchers to analyze tree ring radius measurement, and is of great significance for analyzing the tree growth process.


Author(s):  
Cynthia Schmidt ◽  
Andreas M. Hötker ◽  
Urs J. Muehlematter ◽  
Irene A. Burger ◽  
Olivio F. Donati ◽  
...  

Abstract Background Bowel preparation before multiparametric MRI (mpMRI) of the prostate is performed widely, despite contradictory or no evidence for efficacy. Purpose To investigate the value of hyoscine N-butylbromide (HBB), microenema (ME) and ‘dietary restrictions’ (DR) for artifact reduction and image quality (IQ) in mpMRI of the prostate. Study type Retrospective. Population Between 10/2018 and 02/2020 treatment-naïve men (median age, 64.9; range 39.8–87.3) who underwent mpMRI of the prostate were included. The total patient sample comprised of n = 180 patients, who received either HBB, ME, were instructed to adhere to DR, or received a combination of those measures prior to the MR scan. Field strength/sequence T2-weighted imaging (T2w), diffusion-weighted imaging (DWI), and dynamic contrast-enhanced MRI (DCE-MRI) scanned on two 3T systems. Assessment A radiologist specialized in urogenital imaging (R1) and a senior radiology resident (R2) visually assessed IQ parameters on transversal T2w, DWI and ADC maps on a 5-point Likert-like scale. Statistical tests Group comparison between IQ parameters was performed on reader level using Kruskal–Wallis and Mann–Whitney U tests. Binary univariate logistic regression analysis was used to assess independent predictors of IQ. Interrater agreement was assessed using Intraclass Correlation Coefficient (ICC). Results ‘DWI geometric distortion’ was significantly more pronounced in the HBB+/ME−/DR− (R1, 3.6 and R2, 4.0) as compared to the HBB−/ME+/DR− (R1, 4.2 and R2, 4.6) and HBB+/ME+/DR− (R1, 4.3 and R2, 4.7) cohort, respectively. Parameters ‘DWI IQ’ and ‘Whole MRI IQ’ were rated similarly by both readers. ME was a significant independent predictor of ‘good IQ’ for the whole MRI for R1 [b = 1.09, OR 2.98 (95% CI 1.29, 6.87)] and R2 [b = 1.01, OR 2.73 (95% CI 1.24, 6.04)], respectively. Data conclusion ME seems to significantly improve image quality of DWI and the whole mpMRI image set of the prostate. HBB and DR did not have any benefit.


2021 ◽  
Vol 7 (3) ◽  
pp. 34
Author(s):  
Loris Giovannini ◽  
Barry W. Farmer ◽  
Justin S. Woods ◽  
Ali Frotanpour ◽  
Lance E. De Long ◽  
...  

We present a new formulation of the dynamical matrix method for computing the magnetic normal modes of a large system, resulting in a highly scalable approach. The motion equation, which takes into account external field, dipolar and ferromagnetic exchange interactions, is rewritten in the form of a generalized eigenvalue problem without any additional approximation. For its numerical implementation several solvers have been explored, along with preconditioning methods. This reformulation was conceived to extend the study of magnetization dynamics to a broader class of finer-mesh systems, such as three-dimensional, irregular or defective structures, which in recent times raised the interest among researchers. To test its effectiveness, we applied the method to investigate the magnetization dynamics of a hexagonal artificial spin-ice as a function of a geometric distortion parameter following the Fibonacci sequence. We found several important features characterizing the low frequency spin modes as the geometric distortion is gradually increased.


2021 ◽  
Vol 22 (2) ◽  
pp. 118-125
Author(s):  
Benjamin Lewis ◽  
Anamaria Guta ◽  
Stacie Mackey ◽  
H. Michael Gach ◽  
Sasa Mutic ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document