Design and Fabrication of Microfluidics Paper-Based Devices for Contaminant Detection Using aWax Printer

2021 ◽  
Vol 2021 (16) ◽  
pp. 339-1-339-8
Author(s):  
Qiyue Liang ◽  
Min Zhao ◽  
George T. C. Chiu ◽  
Jan P. Allebach

In this paper, we introduce an eight-channel paper-based microfluidic device that aims to detect multiple chemicals at once. The microfluidic device we propose is fabricated by wax printing on filter paper, which is trouble-free to handle, low cost, and easy to fabricate. As a hydrophobic material, wax (solid ink) defines the hydrophilic channels for testing. By using image processing techniques, we analyze the width change caused by heating of wax strokes and wax channels, which is a necessary step in the wax printing fabrications. In the same way, we test the minimum width of a channel that allows solutions to cross through and the minimum width of a barrier that is hydrophobic and blocks liquid flow. We also compare two different heating methods, the heat gun and the hot plate, by checking the wax channel width before and after heating based on our image processing pipeline. We conclude that a heat gun will be better for heating channels with relatively large widths. Using high resolution wax printing, we integrate multiple devices on a single paper, which makes this method very cost-effective. Lamination of wax-printed paper based devices is also analyzed, as leakage on the back side of paper is sometimes worth attention.

Author(s):  
Mingjian Wu ◽  
Karim El-Basyouny ◽  
Tae J. Kwon

Speeding is a leading factor that contributes to approximately one-third of all fatal collisions. Over the past decades, various passive/active countermeasures have been adopted to improve drivers’ compliance to posted speed limits to improve traffic safety. The driver feedback sign (DFS) is considered a low-cost innovative intervention that is being widely used, in growing numbers, in urban cities to provide positive guidance for motorists. Despite their documented effectiveness in reducing speeds, limited literature exists on their impact on reducing collisions. This study addresses this gap by designing a before-and-after study using the empirical Bayes method for a large sample of urban road segments. Safety performance functions and yearly calibration factors are developed to quantify the sole effectiveness of DFS using large-scale spatial data and a set of reference road segments within the city of Edmonton, Alberta, Canada. Likewise, the study followed a detailed economic analysis based on three collision-costing criteria to investigate if DFS was indeed a cost-effective intervention. The results showed significant collision reductions that ranged from 32.5% to 44.9%, with the highest reductions observed for severe speed-related collisions. The results further attested that the benefit–cost ratios, combining severe and property-damage-only collisions, ranged from 8.2 to 20.2 indicating that DFS can be an extremely economical countermeasure. The findings from this study can provide transportation agencies in need of implementing cost-efficient countermeasures with a tool they need to design a long-term strategic deployment plan to ensure the safety of traveling public.


2007 ◽  
Vol 29-30 ◽  
pp. 127-130
Author(s):  
Colleen J. Bettles ◽  
Rimma Lapovok ◽  
H.P. Ng ◽  
Dacian Tomus ◽  
Barry C. Muddle

The range of commercial titanium alloys available is currently extremely restricted, with one alloy (Ti-6Al-4V), and derivatives of it, accounting for a very large proportion of all applications. High performance alloys are costly to fabricate and limited to low-volume applications that can sustain the cost. With the emergence of new processing technologies that promise to reduce significantly the cost of production of titanium metal, especially in powder form, there is an emerging imperative for cost-effective near net shape powder processing techniques to permit the benefit of reduced metal cost to be passed on to higher-volume applications. Equally, there is a need for the design and development of new alloys that are intrinsically low-cost and lend themselves to fabrication by novel cost-effective net shape processing. The approaches that might be used to select, design and process both conventional alloys and novel alloy systems will be reviewed, with a focus on innovation in design of low-cost alloys amenable to new processing paths and increasingly tolerant of variability in composition.


2016 ◽  
Vol 2016 (NOR) ◽  
pp. 12-16 ◽  
Author(s):  
Erja Sipilä ◽  
Johanna Virkki ◽  
Lauri Sydänheimo ◽  
Leena Ukkonen

The growth of the wireless world, especially the increasing popularity of the Internet of Things, has created a need for cost-effective and environmentally friendly electronics. Great potential lies especially in versatile applications of passive UHF RFID components. However, the reliability of these components is a major issue to be addressed. This paper presents a preliminary reliability study of glue-coated and non-coated brush-painted copper tags on a plywood substrate in high humidity conditions. The passive UHF RFID components presented in this paper are fabricated using brush-painting and photonic sintering of cost-effective copper oxide ink directly on a plywood substrate. The performance of the glue-coated and non-coated tags is evaluated through wireless tag measurements before and after high humidity testing. The measurement results show that the copper tags on plywood substrate initially achieve peak read ranges of 7–8 meters and the applied coating does not affect to the read range. Moisture does not prevent the coated tags from working in a tolerable way, although the tag performance slightly temporarily decreases due to the moisture absorption. However, when the moisture exposure is long, the performance degradation comes irreversible. The absorbed moisture decreases the read range of the non-coated tags and the performance does not return back to normal after drying. Hence, the coating improves the reliability of the tags in a moist environment compared to the non-coated tags. Based on our results, the plywood material and the used manufacturing methods are very potential for low-cost, high-volume green electronics manufacturing.


2012 ◽  
Vol 2012 (DPC) ◽  
pp. 000924-000943
Author(s):  
Russell Stapleton ◽  
Jim Greig

Underfill solutions for fine pitch flip chip assemblies is an active area of development. Non-conductive films (NCF) and pastes (NCP) have shown great potential in bridging the gap between no-flow and capillary underfills for improving the reliability of fine pitched devices. But NCFs and NCPs require costly passivated pad finishes (e.g. Au, Sn, Ni, OSP) or careful substrate handling for proper solder joint formation. In this paper, we will describe a new class of underfill material that benefits from the growing trend of using thermal compression bonding as a cost effective alternative to mass reflow based underfilling processes (e.g. capillary and no-flow). This material is a fluxing NCP that is useful for a wide variety of fine pitch substrates, including low cost Cu. The material we will demonstrate contains many advanced features: high filler loading, strong flux activity, long work life, off-tool pre-dispense, low stress, high Tg, high modulus and rapid cure. The all-in-one underfill demonstrated in this paper is applied by using a screen printing process, where the material is applied to all of the chip sites in one step achieving excellent application efficiency and wetting/conformity to the substrate. The substrate is glass, containing a 4x4 array of die sites. Each of the die sites are 5x5mm in size with a full area array of 2501 Cu pads (50um pads on 100um pitch) that are pre-oxidized for 1h at 175C in air prior to printing (to simulate a dehydration bake). This transparent substrate was chosen to show the robust nature of the underfill for fluxing, stability and void-free placement/cure. Images of the substrate, before and after chip bonding will be given, along with cross sections. Details of the material properties will also be discussed.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Nihaal Mehta ◽  
Phillip X. Braun ◽  
Isaac Gendelman ◽  
A. Yasin Alibhai ◽  
Malvika Arya ◽  
...  

Abstract Binarization is a critical step in analysis of retinal optical coherence tomography angiography (OCTA) images, but the repeatability of metrics produced from various binarization methods has not been fully assessed. This study set out to examine the repeatability of OCTA quantification metrics produced using different binarization thresholding methods, all of which have been applied in previous studies, across multiple devices and plexuses. Successive 3 × 3 mm foveal OCTA images of 13 healthy eyes were obtained on three different devices. For each image, contrast adjustments, 3 image processing techniques (linear registration, histogram normalization, and contrast-limited adaptive histogram equalization), and 11 binarization thresholding methods were independently applied. Vessel area density (VAD) and vessel length were calculated for retinal vascular images. Choriocapillaris (CC) images were quantified for VAD and flow deficit metrics. Repeatability, measured using the intra-class correlation coefficient, was inconsistent and generally not high (ICC < 0.8) across binarization thresholds, devices, and plexuses. In retinal vascular images, local thresholds tended to incorrectly binarize the foveal avascular zone as white (i.e., wrongly indicating flow). No image processing technique analyzed consistently resulted in highly repeatable metrics. Across contrast changes, retinal vascular images showed the lowest repeatability and CC images showed the highest.


Fabrication based on the vapour-phase reaction technique has proven to be the most cost-effective method for producing low-loss optical fibres. This is particularly true for silica-based materials and is now being investigated for fluoride-based glasses. The advantages accrue not only from the purity possible but from the flexibility of the process. This enables complex refractive-index structures to be fabricated that allow enhanced system performance. Advances toward low-cost fabrication have been made in all major processing techniques during the past few years. A review of the current status is presented.


2017 ◽  
Vol 2620 (1) ◽  
pp. 96-104 ◽  
Author(s):  
Anuj Sharma ◽  
Edward Smaglik ◽  
Sirisha Kothuri ◽  
Oliver Smith ◽  
Peter Koonce ◽  
...  

To improve the safety of people walking at particular signalized intersections, traffic signal engineers may implement leading pedestrian intervals (LPIs) to provide pedestrians with a walk signal for a few seconds before the parallel vehicular green indication. Previous before-and-after studies and simple economic analyses have indicated that LPIs are low-cost tools that can reduce vehicle–pedestrian conflicts and crashes at some signalized intersections. Despite this evidence, municipalities have little guidance for when to implement LPIs. A marginal benefit–cost framework is developed with quantitative metrics and extends the concept of traffic conflicts and marginal safety–delay trade-offs to analyze the appropriateness of implementing an LPI at specific signalized intersections. The method provides guidance to help quantify the probability of a conflict occurring and direction on whether to implement an LPI at a given location from macroscopic-level inputs, including number of turning movements, crash data, and geometry. A case study with sample data indicated that an LPI was cost-effective for the scenario presented.


Author(s):  
Rajithkumar B. K. ◽  
Shilpa D. R. ◽  
Uma B. V. ◽  
H. S. Mohana

Blood-related diseases are one of the most widespread and rampant vector-borne diseases in tropical countries like India. With an ever-increasing population and enormous stress on resources like land and water, new avenues open for insects like mosquitoes to breed and propagate the virus. The traditional lab method for the detection of diseases in a human's anatomy involves extracting the blood and subjecting it to various tests to count and detect the number of blood cells. An abnormally low platelet count would indicate the presence of the virus in the body. The usual method undertaken by labs all over the world is the use of the conventional chemical procedures, which may take a few hours to produce the result. The proposed system for the low cost estimating of RBC and WBC is developed using image processing techniques and canny edge detection algorithm. The obtained results are analysed and compared with the conventional methods, and results are obtained with an accuracy of 91.2.


Author(s):  
Ali Mohammad Alqudah ◽  
Hiam Alquraan ◽  
Isam Abu-Qasmieh ◽  
Alaa Al-Badarneh

Blindness usually comes from two main causes, glaucoma and diabetes. Robust mass screening is performed for diagnosing, such as screening that requires a cost-effective method for glaucoma and diabetic retinopathy and integrates well with digital medical imaging, image processing, and administrative processes. For addressing all these issues, we propose a novel low-cost automated glaucoma and diabetic retinopathy diagnosis system, based on features extraction from digital eye fundus images. This paper proposes a diagnosis system for automated identification of healthy, glaucoma, and diabetic retinopathy. Using a combination of local binary pattern features, Gabor filter features, statistical features, and color features which are then fed to an artificial neural network and support vector machine classifiers. In this work, the classifier identifies healthy, glaucoma, and diabetic retinopathy images with an accuracy of 91.1%,92.9%, 92.9%, and 92.3% and sensitivity of 91.06%, 92.6%, 92.66%, and 91.73% and specificity of 89.83%, 91.26%, 91.96%, and 89.16% for ANN, and an accuracy of 90.0%,92.94%, 95.43%, and 97.92% and sensitivity of 89.34%, 93.26%, 95.72%, and 97.93% and specificity of 95.13%, 96.68%, 97.88%, and 99.05% for SVM, based on 5, 10, 15, and 31 number of selected features. The proposed system can detect glaucoma, diabetic retinopathy and normal cases with high accuracy and sensitivity using selected features, the performance of the system is high due to using of a huge fundus database.


2001 ◽  
Vol 7 (S2) ◽  
pp. 832-833
Author(s):  
A. Domenicucci

Image processing techniques have been used for decades in many branches of science. with the advent of low cost, highresolution CCD cameras and the advances in personal computing, techniques previously used in other disciplines are increasingly being applied by transmission electron microscopists. The present paper gives an example of using image processing techniques for characterizing the number and size of second phase precipitates in an oxide matrix.Si inclusions in the form of Si precipitates can occur in silicon dioxide films. The inclusions are contained within the films and effectively reduce the local thickness of the oxide. This thinning results in a reduction in the voltage necessary to cause oxide breakdown; the larger is the precipitate, the lower the breakdown voltage. Knowledge of the precipitate size and density is therefore important when assessing the dielectric integrity of these films. The Si precipitates are crystalline and more or less randomly oriented within the matrix.


Sign in / Sign up

Export Citation Format

Share Document