scholarly journals The mathematical model of hot deformation resistance with reference to microstructural changes during rolling in plate mill.

1985 ◽  
Vol 25 (11) ◽  
pp. 1146-1155 ◽  
Author(s):  
Yoshiyuki SAITO ◽  
Teiichi ENAMI ◽  
Tomo TANAKA
2021 ◽  
Vol 2057 (1) ◽  
pp. 012109
Author(s):  
M N Kravchenko ◽  
M I Ivlev ◽  
N N Dieva

Abstract In this paper, authors propose a method to create a complete hydrodynamic model of the polymer displacement process. It is based on the processing of the laboratory tests with core samples, considering the polymer substance properties and microstructural changes occurring in the porous matrix during the adsorption of polymer particles. Based on the adaptation of the mathematical model to the results of tests with polyacrylamide Flopaam and polysaccharide Gum Arabic, calculations of the effectiveness of polymer flooding application on samples of terrigenous deposits are carried out.


2012 ◽  
Vol 538-541 ◽  
pp. 1724-1731
Author(s):  
Hong Wei Zheng ◽  
Di Tang ◽  
Hui Bin Wu ◽  
Liu Yang

The high-temperature deformation resistance of X120 pipeline steel was studied under different deformation temperature and different deformation rate through the hot compression test on the Gleeble-3500 thermal/mechanics simulation test machine. The influence of deformation degree, deformation temperature and deformation rate on deformation resistance was thoroughly investigated. The deformation resistance of X120 pipeline steel increased slowly when deformation degree was higher than 0.2. With the increase of deformation temperature, the work-hardening effect was weakened, so the deformation resistance decreased. And the deformation rate had dual influences on the deformation resistance, including the effect of temperature and time. Based on the experiment data, the parameters in the mathematical model were regressed by using SPSS (Statistic Package for Social Science), and the mathematical model of the deformation resistance of X120 pipeline steel was established finally. Through the regression analysis, the model had been proved to have great matching precision.


2012 ◽  
Vol 502 ◽  
pp. 184-188
Author(s):  
Hong Li ◽  
Xiao Lin You

the hardening curve of the steel in the plastic deformation only considers the influence of the deformation degree on the resistance. This paper, according to the basic theory of plastic processing, proposes out the respective relation between the deformation resistance and the deformation degree, the temperature, as well as the rate. This paper gets the curves of these relations by experiments, summarizes the fundamental equations by simulation and finally deduces the plastic conditional equations relating to the material performance----the tensile strength.


2012 ◽  
Vol 538-541 ◽  
pp. 1660-1663
Author(s):  
Mei Cheng ◽  
Zhi Min Zhang ◽  
Jian Min Yu

In this paper, the deformation characteristics of workpiece of different deformation parts was experimented in multi-dimensional loading conditions, The research shows that the metal around active mode follows priority deformation principle when selectable multi-dimensional flowing. Through the analysis of deformation resistance and driving force, the influence factors of selectable multi-dimensional flowing was determined, and the mathematical model of selectable multi-dimensional flowing was established, the theoretical basis of priority deformation in local loading area was provided, a powerful guarantee was provided for precise design multi-dimensional process.


Author(s):  
Olexandr Pavlenko ◽  
Serhii Dun ◽  
Maksym Skliar

In any economy there is a need for the bulky goods transportation which cannot be divided into smaller parts. Such cargoes include building structures, elements of industrial equipment, tracked or wheeled construction and agricultural machinery, heavy armored military vehicles. In any case, tractor-semitrailer should provide fast delivery of goods with minimal fuel consumption. In order to guarantee the goods delivery, tractor-semitrailers must be able to overcome the existing roads broken grade and be capable to tow a semi-trailer in off-road conditions. These properties are especially important for military equipment transportation. The important factor that determines a tractor-semitrailer mobility is its gradeability. The purpose of this work is to improve a tractor-semitrailer mobility with tractor units manufactured at PJSC “AutoKrAZ” by increasing the tractor-semitrailer gradeability. The customer requirements for a new tractor are determined by the maximizing the grade to 18°. The analysis of the characteristics of modern tractor-semitrailers for heavy haulage has shown that the highest rate of this grade is 16.7°. The factors determining the limiting gradeability value were analyzed, based on the tractor-semitrailer with a KrAZ-6510TE tractor and a semi-trailer with a full weight of 80 t. It has been developed a mathematical model to investigate the tractor and semi-trailer axles vertical reactions distribution on the tractor-semitrailer friction performances. The mathematical model has allowed to calculate the gradeability value that the tractor-semitrailer can overcome in case of wheels and road surface friction value and the tractive force magnitude from the engine. The mathematical model adequacy was confirmed by comparing the calculations results with the data of factory tests. The analysis showed that on a dry road the KrAZ-6510TE tractor with a 80 t gross weight semitrailer is capable to climb a gradient of 14,35 ° with its coupling mass full use condition. The engine's maximum torque allows the tractor-semitrailer to overcome a gradient of 10.45° It has been determined the ways to improve the design of the KrAZ-6510TE tractor to increase its gradeability. Keywords: tractor, tractor-semitrailer vehicle mobility, tractor-semitrailer vehicle gradeability.


Author(s):  
Oleksii Timkov ◽  
Dmytro Yashchenko ◽  
Volodymyr Bosenko

The article deals with the development of a physical model of a car equipped with measuring, recording and remote control equipment for experimental study of car properties. A detailed description of the design of the physical model and of the electronic modules used is given, links to application libraries and the code of the first part of the program for remote control of the model are given. Atmega microcontroller on the Arduino Uno platform was used to manage the model and register the parameters. When moving the car on the memory card saved such parameters as speed, voltage on the motor, current on the motor, the angle of the steered wheel, acceleration along three coordinate axes are recorded. Use of more powerful microcontrollers will allow to expand the list of the registered parameters of movement of the car. It is possible to measure the forces acting on the elements of the car and other parameters. In the future, it is planned to develop a mathematical model of motion of the car and check its adequacy in conducting experimental studies on maneuverability on the physical model. In addition, it is possible to conduct studies of stability and consumption of electrical energy. The physical model allows to quickly change geometric dimensions and mass parameters. In the study of highway trains, this approach will allow to investigate the various layout schemes of highway trains in the short term. It is possible to make two-axle road trains and saddle towed trains, three-way hitched trains of different layout. The results obtained will allow us to improve not only the mathematical model, but also the experimental physical model, and move on to further study the properties of hybrid road trains with an active trailer link. This approach allows to reduce material and time costs when researching the properties of cars and road trains. Keywords: car, physical model, experiment, road trains, sensor, remote control, maneuverability, stability.


Author(s):  
Serhii Kovbasenko ◽  
Andriy Holyk ◽  
Serhii Hutarevych

The features of an advanced mathematical model of motion of a truck with a diesel engine operating on the diesel and diesel gas cycles are presented in the article. As a result of calculations using the mathematical model, a decrease in total mass emissions as a result of carbon monoxide emissions is observed due to a decrease in emissions of nitrogen oxides and emissions of soot in the diesel gas cycle compared to the diesel cycle. The mathematical model of a motion of a truck on a city driving cycle according to GOST 20306-90 allows to study the fuel-economic, environmental and energy indicators of a diesel and diesel gas vehicle. The results of the calculations on the mathematical model will make it possible to conclude on the feasibility of converting diesel vehicles to using compressed natural gas. Object of the study – the fuel-economic, environmental and energy performance diesel engine that runs on dual fuel system using CNG. Purpose of the study – study of changes in fuel, economic, environmental and energy performance of vehicles with diesel engines operating on diesel and diesel gas cycles, according to urban driving cycle modes. Method of the study – calculations on a mathematical model and comparison of results with road tests. Bench and road tests, results of calculations on the mathematical model of motion of a truck with diesel, working on diesel and diesel gas cycles, show the improvement of environmental performance of diesel vehicles during the converting to compressed natural gas in operation. Improvement of environmental performance is obtained mainly through the reduction of soot emissions and nitrogen oxides emissions from diesel gas cycle operations compared to diesel cycle operations. The results of the article can be used to further develop dual fuel system using CNG. Keywords: diesel engine, diesel gas engine, CNG


1998 ◽  
Vol 2 ◽  
pp. 23-30
Author(s):  
Igor Basov ◽  
Donatas Švitra

Here a system of two non-linear difference-differential equations, which is mathematical model of self-regulation of the sugar level in blood, is investigated. The analysis carried out by qualitative and numerical methods allows us to conclude that the mathematical model explains the functioning of the physiological system "insulin-blood sugar" in both normal and pathological cases, i.e. diabetes mellitus and hyperinsulinism.


2001 ◽  
Vol 6 (1) ◽  
pp. 9-19 ◽  
Author(s):  
A. Buikis ◽  
J. Cepitis ◽  
H. Kalis ◽  
A. Reinfelds ◽  
A. Ancitis ◽  
...  

The mathematical model of wood drying based on detailed transport phenomena considering both heat and moisture transfer have been offered in article. The adjustment of this model to the drying process of papermaking is carried out for the range of moisture content corresponding to the period of drying in which vapour movement and bound water diffusion in the web are possible. By averaging as the desired models are obtained sequence of the initial value problems for systems of two nonlinear first order ordinary differential equations. 


Sign in / Sign up

Export Citation Format

Share Document