scholarly journals Effects of Shape and Distribution of Retained Austenite on Static Tensile Properties of Two Ni-Cr-Mo Steels Containing Medium Carbon

1976 ◽  
Vol 62 (6) ◽  
pp. 661-669 ◽  
Author(s):  
Kunio OKABAYASHI ◽  
Yoshiyuki TOMITA ◽  
Ikuo KUROKI
Alloy Digest ◽  
2020 ◽  
Vol 69 (9) ◽  

Abstract Lucefin Group C30, C30E, and C30R are medium-carbon, non-alloy steels that are used in the normalized, cold worked, or quenched and tempered condition. C30E and C30R may also be flame or induction hardened. C30, C30E, and C30R are widely used for small, moderately stressed parts, where higher strength levels are needed than can be achieved in the lower carbon grades, and also where toughness is more important than high tensile strength. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on forming, heat treating, machining, and joining. Filing Code: CS-206. Producer or source: Lucefin S.p.A.


Alloy Digest ◽  
1961 ◽  
Vol 10 (11) ◽  

Abstract Milne CMV is a 5% chromium, medium-carbon hot work tool steel, having high compression strength, wear resistance, and corrosion resistance. This datasheet provides information on composition, hardness, and tensile properties as well as fracture toughness and creep. It also includes information on high temperature performance as well as forming, heat treating, machining, and joining. Filing Code: TS-111. Producer or source: A. Milne & Company (Distributor).


Alloy Digest ◽  
1996 ◽  
Vol 45 (1) ◽  

Abstract INCO WELD C Electrode is a stainless-alloy electrode especially designed for shielded-metal-arc welding of a broad range of materials, including many difficult-to-weld compositions. It can be used in stainless steels, mild and medium-carbon steels,and spring steels. This datasheet provides information on composition, hardness, and tensile properties. It also includes information on joining. Filing Code: SS-632. Producer or source: Inco Alloys International Inc.


Alloy Digest ◽  
1963 ◽  
Vol 12 (3) ◽  

Abstract AISI 3150 is a medium carbon, chromium-nickel alloy steel having great depth hardness, high elastic properties and excellent fatigue resistance and toughness. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties as well as fracture toughness. It also includes information on heat treating and machining. Filing Code: SA-143. Producer or source: Alloy steel mills and foundries.


Alloy Digest ◽  
2021 ◽  
Vol 70 (1) ◽  

Abstract Industeel Mars 600 is a medium-carbon, nickel-chromium-molybdenum-boron, alloy protection steel that is used in the quenched and tempered condition (typical hardness = 600 HBW). It is used not only as an add-on armor, but also as a structural material. This datasheet provides information on composition, hardness, tensile properties, and bend strength. It also includes information on forming, heat treating, machining, and joining. Filing Code: SA-876. Producer or source: Industeel France (a subsidiary of ArcelorMittal).


2012 ◽  
Vol 98 (11) ◽  
pp. 610-617 ◽  
Author(s):  
Junya Kobayashi ◽  
Nobuo Yoshikawa ◽  
Toshio Murakami ◽  
Koh-ichi Sugimoto

Alloy Digest ◽  
2021 ◽  
Vol 70 (1) ◽  

Abstract Uddeholm Viking is a medium-carbon, chromium-molybdenum-vanadium, alloy cold-work tool steel that is characterized by an excellent combination of wear resistance and toughness required for chipper-knives and for heavy-duty blanking and forming. This datasheet provides information on composition, physical properties, hardness, elasticity, and tensile properties. It also includes information on heat treating and surface treatment. Filing Code: TS-807. Producer or source: Uddeholms AB (a voestalpine company).


Author(s):  
Asma Ul Hosna Meem ◽  
Kyle Rudolph ◽  
Allyson Cox ◽  
Austin Andwan ◽  
Timothy Osborn ◽  
...  

Abstract Digital light processing (DLP) is an emerging vatphotopolymerization-based 3D-printing technology where full layers of photosensitive resin are irradiated and cured with projected ultraviolet (UV) light to create a three-dimensional part layer-by-layer. Recent breakthroughs in polymer chemistry have led to a growing number of UV-curable elastomeric photoresins developed exclusively for vat photopolymerization additive manufacturing (AM). Coupled with the practical manufacturing advantages of DLP AM (e.g., industry-leading print speeds and sub-micron-level print resolution), these novel elastomeric photoresins are compelling candidates for emerging applications requiring extreme flexibility, stretchability, conformability, and mechanically-tunable stiffness (e.g., soft robotic actuators and stretchable electronics). To advance the role of DLP AM in these novel and promising technological spaces, a fundamental understanding of the impact of DLP manufacturing process parameters on mechanical properties is requisite. This paper highlights our recent efforts to explore the process-property relationship for ELAST-BLK 10, a new commercially-available UV-curable elastomer for DLP AM. A full factorial design of experiments is used to investigate the effect of build orientation and layer thickness on the quasi-static tensile properties (i.e., small-strain elastic modulus, ultimate tensile strength, and elongation at fracture) of ELAST-BLK 10. Statistical results, based on a general linear model via ANOVA methods, indicate that specimens with a flat build orientation exhibit the highest elastic modulus, ultimate tensile strength, and elongation at fracture, likely due to a larger surface area that enhances crosslink density during the curing process. Several popular hyperelastic constitutive models (e.g., Mooney-Rivlin, Yeoh, and Gent) are calibrated to our quasi-static tensile data to facilitate component-level predictive analyses (e.g., finite-element modeling) of soft robotic actuators and other emerging soft-matter applications.


2021 ◽  
Vol 1016 ◽  
pp. 762-767
Author(s):  
Aleksandra Kozłowska ◽  
Adam Grajcar ◽  
Aleksandra Janik ◽  
Krzysztof Radwański

The temperature-dependent mechanical stability of retained austenite in medium-Mn transformation induced plasticity 0.17C-3.3Mn-1.6Al-1.7Al-0.22Si-0.23Mo thermomechanically processed steel was investigated using scanning electron microscopy (SEM), electron backscatter diffraction (EBSD) and X-ray diffraction (XRD) methods. Specimens were deformed up to rupture in static tensile tests in a temperature range 20–200°C. It was found that deformation temperature affects significantly the intensity of TRIP effect. In case of specimens deformed at temperatures higher than 60°C, a gradual temperature-related decrease in the stability of γ phase was noted. It indicates a progressive decrease of the significance of the TRIP effect and at the same time the growing importance of the thermally activated processes affecting a thermal stability of retained austenite.


Sign in / Sign up

Export Citation Format

Share Document