scholarly journals Origins and Applications of CRISPR-Mediated Genome Editing

2017 ◽  
Vol 31 (1&2) ◽  
pp. 2
Author(s):  
John R. Christin ◽  
Michael V. Beckert

In this graphical review we highlight key milestones in the discovery and development of CRISPR and cas9 technology, as well as illustrate mechanisms of cas9:sgRNA target binding and DNA repair.

Cells ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 1318 ◽  
Author(s):  
Nadja Bischoff ◽  
Sandra Wimberger ◽  
Marcello Maresca ◽  
Cord Brakebusch

Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) genome editing has become a standard method in molecular biology, for the establishment of genetically modified cellular and animal models, for the identification and validation of drug targets in animals, and is heavily tested for use in gene therapy of humans. While the efficiency of CRISPR mediated gene targeting is much higher than of classical targeted mutagenesis, the efficiency of CRISPR genome editing to introduce defined changes into the genome is still low. Overcoming this problem will have a great impact on the use of CRISPR genome editing in academic and industrial research and the clinic. This review will present efforts to achieve this goal by small molecules, which modify the DNA repair mechanisms to facilitate the precise alteration of the genome.


2019 ◽  
Vol 41 (1) ◽  
Author(s):  
Masanobu Kawanishi

Abstract The 32nd summer school of the Research Community for Mechanisms of Mutations was held at Inter-University Seminar House in Hachioji city, Tokyo, from September 7 to 8, 2019. Thirty-eight people attended this annual event, and three eminent researchers were invited to discuss DNA damage induced by endogenous aldehydes, “action-at-a-distance mutagenesis” and a novel genome editing method, and DNA repair in fungi and plants. In addition to these plenary sessions, eleven participants presented their own research in oral sessions. More than half of the participants were young scientists such as graduate/undergraduate students, post-doctoral fellows and assistant professors. All members joined in enthusiastic discussions and acquired new scientific knowledge through these two days.


2017 ◽  
Author(s):  
Chris D Richardson ◽  
Katelynn R Kazane ◽  
Sharon J Feng ◽  
Nicholas L Bray ◽  
Axel J Schäfer ◽  
...  

AbstractCRISPR-Cas9 genome editing creates targeted double strand breaks (DSBs) in eukaryotic cells that are processed by cellular DNA repair pathways. Co-administration of single stranded oligonucleotide donor DNA (ssODN) during editing can result in high-efficiency (>20%) incorporation of ssODN sequences into the break site. This process is commonly referred to as homology directed repair (HDR) and here referred to as single stranded template repair (SSTR) to distinguish it from repair using a double stranded DNA donor (dsDonor). The high efficacy of SSTR makes it a promising avenue for the treatment of genetic diseases1,2, but the genetic basis of SSTR editing is still unclear, leaving its use a mostly empiric process. To determine the pathways underlying SSTR in human cells, we developed a coupled knockdown-editing screening system capable of interrogating multiple editing outcomes in the context of thousands of individual gene knockdowns. Unexpectedly, we found that SSTR requires multiple components of the Fanconi Anemia (FA) repair pathway, but does not require Rad51-mediated homologous recombination, distinguishing SSTR from repair using dsDonors. Knockdown of FA genes impacts SSTR without altering break repair by non-homologous end joining (NHEJ) in multiple human cell lines and in neonatal dermal fibroblasts. Our results establish an unanticipated and central role for the FA pathway in templated repair from single stranded DNA by human cells. Therapeutic genome editing has been proposed to treat genetic disorders caused by deficiencies in DNA repair, including Fanconi Anemia. Our data imply that patient genotype and/or transcriptome profoundly impact the effectiveness of gene editing treatments and that adjuvant treatments to bias cells towards FA repair pathways could have considerable therapeutic value.


2018 ◽  
Author(s):  
Han Wang ◽  
Heenam Park ◽  
Jonathan Liu ◽  
Paul W. Sternberg

AbstractNull mutants are essential for analyzing gene function. Here, we describe a simple and efficient method to generate Caenorhabditis elegans null mutants using CRISPR/Cas9 and short single stranded DNA oligo repair templates to insert a universal 43-nucleotide-long stop knock-in (STOP-IN) cassette into the early exons of target genes. This cassette has stop codons in all three reading frames and leads to frameshifts, which will generate putative null mutations regardless of the reading frame of the insertion position in exons. The STOP-IN cassette also contains an exogenous Cas9 target site that allows further genome editing and provides a unique sequence that simplifies the identification of successful insertion events via PCR. As a proof of concept, we inserted the STOP-IN cassette right at a Cas9 target site in aex-2 to generate new putative null alleles by injecting preassembled Cas9 ribonucleoprotein and a short synthetic single stranded DNA repair template containing the STOP-IN cassette and two 35-nucleotide-long homology arms identical to the sequences flanking the Cas9 cut site. We showed that these new aex-2 alleles phenocopied an existing loss-of-function allele of aex-2. We further showed that the new aex-2 null alleles could be reverted back to the wild-type sequence by targeting exogenous Cas9 cut site included in the STOP-IN cassette and providing a single stranded wild-type DNA repair oligo. We applied our STOP-IN method to generate new putative null mutants for additional 20 genes, including three pharyngeal muscle-specific genes (clik-1, clik-2, and clik-3), and reported a high insertion rate (46%) based on the animals we screened. We showed that null mutations of clik-2 cause recessive lethality with a severe pumping defect and clik-3 null mutants have a mild pumping defect, while clik-1 is dispensable for pumping. We expect that the knock-in method using the STOP-IN cassette will facilitate the generation of new null mutants to understand gene function in C. elegans and other genetic model organisms.SummaryWe report a simple and efficient CRISPR/Cas9 genome editing strategy to generate putative null C. elegans mutants by inserting a small universal stop knock-in (STOP-IN) cassette with stop codons in three frames and frameshifts. The strategy is cloning-free, with the mixture consisting of preassembled Cas9 ribonucleoprotein and single stranded repair DNA oligos directly injected into gonads of adult C. elegans. The universal STOP-IN cassette also contains a unique sequence that simplifies detection of successful knock-in events via PCR and an exogenous Cas9 target sequence that allows further genome editing.


2015 ◽  
Author(s):  
Kaveh Daneshvar

Recent advances in CRISPR-Cas9 genome editing tool have made great promises to basic and biomedical research as well as gene therapy. Efforts to make the CRISPR-Cas9 system applicable in gene therapy are largely focused on two aspects: 1) increasing the specificity of this system by eliminating off-target effects, and 2) optimizing in vivo delivery of the CRISPR-Cas9 DNA constructs to target cells and limiting the expression of Cas9 and gRNA to prevent toxicity immune responses. However, there is an unnoted but crucial consideration about the mode of DNA repair at the lesion caused by CRISPR-Cas9. In this commentary, I briefly highlight recent publications on in vivo use of the CRISPR-Cas9 system in gene therapy. I then discuss the undesired on-target DNA repair events that can occur as a result of the activity of CRISPR-Cas9. Overall, this commentary underscores the need for more study on controlled DNA repair in systems targeted with CRISPR-Cas9 genome editing tools.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mathilde Meyenberg ◽  
Joana Ferreira da Silva ◽  
Joanna I. Loizou

The use of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)-Cas9 has moved from bench to bedside in less than 10years, realising the vision of correcting disease through genome editing. The accuracy and safety of this approach relies on the precise control of DNA damage and repair processes to achieve the desired editing outcomes. Strategies for modulating pathway choice for repairing CRISPR-mediated DNA double-strand breaks (DSBs) have advanced the genome editing field. However, the promise of correcting genetic diseases with CRISPR-Cas9 based therapies is restrained by a lack of insight into controlling desired editing outcomes in cells of different tissue origin. Here, we review recent developments and urge for a greater understanding of tissue specific DNA repair processes of CRISPR-induced DNA breaks. We propose that integrated mapping of tissue specific DNA repair processes will fundamentally empower the implementation of precise and safe genome editing therapies for a larger variety of diseases.


2016 ◽  
Vol 129 (9) ◽  
pp. 1769-1774 ◽  
Author(s):  
Owen M. Daly ◽  
David Gaboriau ◽  
Kadin Karakaya ◽  
Sinéad King ◽  
Tiago J. Dantas ◽  
...  

PLoS ONE ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. e0169931 ◽  
Author(s):  
Michail Zaboikin ◽  
Tatiana Zaboikina ◽  
Carl Freter ◽  
Narasimhachar Srinivasakumar

eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Krishna S Ghanta ◽  
Zexiang Chen ◽  
Aamir Mir ◽  
Gregoriy A Dokshin ◽  
Pranathi M Krishnamurthy ◽  
...  

Nuclease-directed genome editing is a powerful tool for investigating physiology and has great promise as a therapeutic approach to correct mutations that cause disease. In its most precise form, genome editing can use cellular homology-directed repair (HDR) pathways to insert information from an exogenously supplied DNA repair template (donor) directly into a targeted genomic location. Unfortunately, particularly for long insertions, toxicity and delivery considerations associated with repair template DNA can limit HDR efficacy. Here, we explore chemical modifications to both double-stranded and single-stranded DNA-repair templates. We describe 5′-terminal modifications, including in its simplest form the incorporation of triethylene glycol (TEG) moieties, that consistently increase the frequency of precision editing in the germlines of three animal models (Caenorhabditis elegans, zebrafish, mice) and in cultured human cells.


Sign in / Sign up

Export Citation Format

Share Document