scholarly journals Microalgae to Energy

2020 ◽  
Vol 4 (2) ◽  
pp. 1-22
Author(s):  
Olushola O

Microalgae, an organism which is considered as a potential source of biofuel from the last decade endowed with excellent capability of CO 2 capture and sequestration, water treatment, prolific growth rate and enormous energy content. The Soxhlet extraction of lipids from microalgae (Chlorella Vulgaris, Nannochloropsis sp., and Thalassiosira weissflogii), was carried out with several solvents (methanol, ethanol, isopropanol, acetone, and hexane), pure and mixtures, in order to optimize the extraction process. For the paper, the highest amount of lipid was obtained using a combination of methanol and acetone or methanol alone. The extract liquid fractions were treated with activated carbon to remove the green pigment. Attempts to in situ algae oil transesterification were accomplished using acid (H 2 SO 4 ) and base (NaOH and CaO) catalysts. The extend of extraction processes was assessed by infrared spectroscopy.

2015 ◽  
Vol 77 (1) ◽  
Author(s):  
M. Shahrir M. Zahari ◽  
S. B. Ismail ◽  
Mohd Zamri Ibrahim ◽  
Su Shiung Lam ◽  
Ramli Mat

This study focuses on the prospect of Jatropha Curcas seed residual from the ultrasonic in-situ process which is used as a biofuel raw material especially for producing bioethanol. Reactive extraction process coupled with ultrasonic system were used for simultaneous oil extraction and transesterification of Jatropha Curcas seed. Using ethanol as the solvent, alkaline catalyst (sodium hydroxide) and with the aid of ultrasonic device, about 50% oil from the initial seeds was extracted, which is equivalent to Soxhlet extraction performance. The seeds were being chemically and physically characterized with ultimate analyses, with SEM and XRD as potential bioethanol raw material. SEM and XRD profile exhibited loosen compounds in the ultrasonicated residues and provided a better accessible and easier degradable fiber for assisting bioethanol production process compared to the initial seeds. The positive effects of the ultrasonic reactive extraction for Jatropha Curcas seed pre-treatment is beneficial towards bioethanol production and could further be used as a solvent in the latter process.


2020 ◽  
Vol 10 (17) ◽  
pp. 6103 ◽  
Author(s):  
I.M. Rizwanul Fattah ◽  
M.Y. Noraini ◽  
M. Mofijur ◽  
A. S. Silitonga ◽  
Irfan Anjum Badruddin ◽  
...  

Microalgae has received overwhelming attention worldwide as a sustainable source for energy generation. However, the production of biofuel from microalgae biomass consists of several steps, of which lipid extraction is the most important one. Because of the nature of feedstock, extraction needs special attention. Three different methods were studied to extract algal oil from two different algae variant, Chlorella sp. and Spirulina sp. The highest percentage oil yield was obtained by ultrasonication (9.4% for Chlorella sp., 6.6% for Spirulina sp.) followed by the Soxhlet and solvent extraction processes. Ultrasonication and Soxhlet extraction processes were further optimized to maximize oil extraction as solvent extraction was not effective in extracting lipid. For ultrasonication, an amplitude of 90% recorded the highest percentage yield of oil for Spirulina sp. and a 70% amplitude recorded the highest percentage yield of oil for Chlorella sp. On the other hand, for Soxhlet extraction, a combination of chloroform, hexane, and methanol at a 1:1:1 ratio resulted in the highest yield of algal oil. Afterward, the crude algae oil from the ultrasonication process was transesterified for 5 h using an immobilized lipase (Novozyme 435) at 40 °C to convert triglycerides into fatty acid methyl ester and glycerol. Thus, ultrasonic-assisted lipid extraction was successful in producing biodiesel from both the species.


2021 ◽  
Vol 271 ◽  
pp. 04018
Author(s):  
Hua Liu ◽  
Ruixu Zhan ◽  
Liangjian Wen ◽  
Zhenyu Zhong

In order to provide guidance for the improvement of supercritical fluid extraction technology in the extraction of natural volatile oil and terpenoids from plants, SFE was compared with steam distillation, solvent extraction, Soxhlet extraction, pressure method and other traditional extraction processes, and the supercritical CO2 extraction conditions of SFE in the extraction of natural volatile oil and terpenoids were studied, including temperature, pressure, extraction time, extraction time, extraction time, extraction time, extraction time, extraction time and so on. The influence of entrainer or co extractant on the extraction effect was discussed to provide optimization parameters for the extraction process of natural volatile oil and terpenoids. SFE technology has advantages in the extraction of natural plant volatile oil and has broad application prospects in industrial production.


Author(s):  
Wilfried Sigle ◽  
Matthias Hohenstein ◽  
Alfred Seeger

Prolonged electron irradiation of metals at elevated temperatures usually leads to the formation of large interstitial-type dislocation loops. The growth rate of the loops is proportional to the total cross-section for atom displacement,which is implicitly connected with the threshold energy for atom displacement, Ed . Thus, by measuring the growth rate as a function of the electron energy and the orientation of the specimen with respect to the electron beam, the anisotropy of Ed can be determined rather precisely. We have performed such experiments in situ in high-voltage electron microscopes on Ag and Au at 473K as a function of the orientation and on Au as a function of temperature at several fixed orientations.Whereas in Ag minima of Ed are found close to <100>,<110>, and <210> (13-18eV), (Fig.1) atom displacement in Au requires least energy along <100>(15-19eV) (Fig.2). Au is thus the first fcc metal in which the absolute minimum of the threshold energy has been established not to lie in or close to the <110> direction.


2021 ◽  
Vol 11 (6) ◽  
pp. 2021-2025
Author(s):  
Liujin Wei ◽  
Guan Huang ◽  
Yajun Zhang

The combination of time-resolved transient photoluminescence with in-situ Fourier transform infrared spectroscopy has been conducted to investigate the intrinsic phase structure-dependent activity of Bi2O3 catalyst for CO2 reduction.


Sign in / Sign up

Export Citation Format

Share Document