scholarly journals The characteristic of hardness and microstructure of extraction forceps for dental and oral care made of stainless-steel

2020 ◽  
Vol 1 (2) ◽  
pp. 56-63
Author(s):  
Nur Kholis ◽  
Nuryanto Nuryanto ◽  
Arif Mustofa

The reliability of medical devices such as extraction forceps is vital for dental and oral care. Apart from having hygienic properties, the extraction forceps must be strong and resistant to corrosion. This study evaluates the effects of tempering temperature on the hardness and microstructure of a medical device's material made from stainless-steel DIN 4021. In the experiments, a heat treatment process was carried out previously with a temperature of 1,050°C and a holding time of 20 minutes. A quenching process was conducted using a cooling channel that flowed with water at 10-20°C. After the heat treatment, the material was subjected to a tempering process with temperature variations of 200, 400, and 600°C. The research results indicated that the heat treatment process could increase the material's hardness value—the hardness value of the raw material changed from 20 to 48.67 HRC with the heat treatment. The tempering parameters resulted in the highest hardness value of 46.67 HRC at 200°C and the lowest value of 42.33 HRC at 600°C. Microstructure testing using optical microscopy showed that it produced ferrite, pearlite, and martensite structures. In contrast, the result of a microstructure testing using Scanning Electron Microscopy on the surface of the material is that the higher the tempering temperature, the larger the particles' area and dimension.

2019 ◽  
Vol 893 ◽  
pp. 39-44
Author(s):  
Bao Tong Chai ◽  
Qing Meng Zeng ◽  
Zheng Feng Wu

The vibration of a generator in a power plant and the cause of rotor cracking wereanalyzed. The causes of generator rotor cracking were analyzed from the rotor raw material andheat treatment process. The results show that the brittleness and notch sensitivity of the rotormaterial are large due to the unreasonable heat treatment process of the rotor. When the stress isconcentrated, a cracking accident occurs. The generator rotor was returned to the manufacturingcompany for operation. At 3000 r•min-1, the generator's overhanging end vibrated greatly, and thefault was successfully eliminated by the dynamic balance test.


2018 ◽  
Vol 7 (4.35) ◽  
pp. 527
Author(s):  
Kharudin Ali ◽  
Johnny Koh Siaw Paw ◽  
M.Aizat M.Sulaiman ◽  
Ahmed N. Abdalla ◽  
Chong Kok Hen ◽  
...  

Ultrasonic testing or commonly known as UT is one of the non-destructive testing technique and widely used in oil and gas industrial inspection. This technique mostly used in defect or crack identification of the pipeline and also used for flaw detection/evaluation, dimensional measurements, and material characterization. This paper presents the effect of heat treatment for S55C carbon steel in attenuation measurement by using ultrasonic testing including annealing, tempering, and quenching process.  Seawater and oil are used as a medium of quenching process. The fixed excitation frequency at 4 MHz is used and 0 degrees with double crystal is implemented in this measurement. The thicknesses of blocks used are as the sample from 30mm until 80mm. The result shows that the measurement of material attenuation will be decreased after annealing, tempering and quenching process from 40% until 99% compared to before the heat treatment process. The highest attenuation decreasing can be seen on the sample block with the 30mm thickness in the heat treatment process.  


2013 ◽  
Vol 845 ◽  
pp. 408-411
Author(s):  
M.S. Adenan ◽  
M.N. Berhan ◽  
E. Haruman

An approach has been made in developing hybrid heat treatment process for improvement of surface properties of duplex stainless steel (DSS). The process was performed using horizontal tube furnace at temperature of 450° C at holding time of 4, 8, 16 and 30 hours. Carbon and nitrogen elements were simultaneously introduced onto the surface of DSS with a ratio of 5% CH4 + 25% NH3 + 70% N2. The microstructure, phase analysis, surface hardness and hardness profile were systematically assessed. Hybrid heat treatment process managed to produce diffusional layer, where longer holding time had increased the thickness of the layer and improved the surface hardness. Expanded austenite phase has been formed at specimens 8, 16 and 30 hours. Longer holding time however gradually diffused Cr2N at the ferrite grains at the substrates. From the process, it can be concluded that low temperature hybrid heat treatment be able to improve the surface hardness of DSS however concern on holding time must be highly considered.


2013 ◽  
Vol 820 ◽  
pp. 15-19
Author(s):  
Xiao Dong Du ◽  
Zi Li Song ◽  
Yi Qing Chen ◽  
Jia Qing Wang ◽  
Guang Fu Liu ◽  
...  

This paper describes the influence of heat treatment process on the microstructure and properties of a new martensitic stainless steel, which contains 0.7% carbon, 17% chromium and 1% molybdenum and can be used as kitchen knives and scissors. The microstructure and properties of the tested alloys after quenching at 980 - 1100 °C and low tempering were investigated by means of optical microscope (OM), scanning electron microscope (SEM), Rockwell hardness tester and impact tester. The results show that the microstructure consists of acicular martensite, carbides and a litter retained austenite after quenching and tempering. The carbides are mainly (Fe,Cr)23C6. The content of retained austenite increases with the increase of the quenching temperature. The solubility of carbon in martensite changes similarly. The martensite gets coarser as the quenching temperature increasing. The maximum value of hardness is 59 HRC, when the quenching temperature is 1060 °C. The impact toughness increases when the quenching temperature increases from 980 °C to 1080 °C and then decreases. The suitable heat treatment process for this alloy is quenching at 1060 °C~1080 °C for 30 min and then tempering at 200°C.


2018 ◽  
Vol 5 (7) ◽  
pp. 14918-14922 ◽  
Author(s):  
Efendi Mabruri ◽  
Siska Prifiharni ◽  
Moch. Syaiful Anwar ◽  
Toni B. Romijarso ◽  
Bintang Adjiantoro

2013 ◽  
Vol 594-595 ◽  
pp. 740-744
Author(s):  
Hidayu Jamil Noorina ◽  
W.H. Xian ◽  
W.M. Arif ◽  
Che Pa Faizul ◽  
Mohd Zaki Ruhiyuddin

This study is to determine the properties and characterization of silicon carbide via grinding and heat treatment process. In this study, the raw materials used were waste glass and graphite powder. Silicon carbide was produced by milling and mixing waste glass and graphite powder in different grinding mills; planetary mill and ring mill. The samples were then heat treated at 700 °C for 1 hour soaking time. Two types of characterization procedures were completed to determine the properties and microstructure of silicon carbide. Formation of silicon carbide was only formed through grinding by planetary mill but not ring mill. This may due to the grinding mechanism of both mills. Due to the simple and low cost of raw material to form silicon carbide, silicon carbide has high potential to be one of the commercialized products. It has the potential in reducing waste and improves the environment quality.


Sign in / Sign up

Export Citation Format

Share Document