High throughput two-stage bonding technique for advanced wafer level packaging

Author(s):  
S. Altenbockum ◽  
B. Oberhofer ◽  
T. Sonoda ◽  
V. Rangelov
Author(s):  
Hanzhuang Liang

In today's microelectronic packaging, components are continuously designed smaller and assembled more densely to allow more functions to fit into compact portable devices. To enable this trend, more manufacturers are using flip chips that have more I/O's and smaller bumps sizes. This has introduced underfill dispensing that fills the gap between the flip chip and the substrate with polymer epoxy to help reduce thermal and mechanical stress at the bonding interface. In device packaging, the demands for cost reduction and miniaturization encourage the use of wafer-level packaging, such as the chip-on-wafer process. As a result, the challenges to this process have grown exponentially, and so have the challenges to underfill dispensing. For example, to package a device with a chip-last process, the keep-out-zone (KOZ) for underfill epoxy placement to nearby components is shrinking, e.g. from 700um to 300–500um within one year. A high-precision, high-throughput underfill dispensing process has been developed to conquer these challenges. This underfill process is being used in production for chip-on-wafer packaging. In one example, underfill must be dispensed within KOZ 300–500um at UPH 4000. New equipment and new dispensing techniques are under development to further push the limit on higher throughput and precision. Key words: underfill, dispense, microelectronic packaging, device packaging, wafer-level packaging, chip-on-wafer, chip-last, keep-out-zone, precision, throughput


2012 ◽  
Vol 132 (8) ◽  
pp. 246-253 ◽  
Author(s):  
Mamoru Mohri ◽  
Masayoshi Esashi ◽  
Shuji Tanaka

Author(s):  
A. Orozco ◽  
N.E. Gagliolo ◽  
C. Rowlett ◽  
E. Wong ◽  
A. Moghe ◽  
...  

Abstract The need to increase transistor packing density beyond Moore's Law and the need for expanding functionality, realestate management and faster connections has pushed the industry to develop complex 3D package technology which includes System-in-Package (SiP), wafer-level packaging, through-silicon-vias (TSV), stacked-die and flex packages. These stacks of microchips, metal layers and transistors have caused major challenges for existing Fault Isolation (FI) techniques and require novel non-destructive, true 3D Failure Localization techniques. We describe in this paper innovations in Magnetic Field Imaging for FI that allow current 3D mapping and extraction of geometrical information about current location for non-destructive fault isolation at every chip level in a 3D stack.


2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Che-Jung Chang ◽  
Der-Chiang Li ◽  
Wen-Li Dai ◽  
Chien-Chih Chen

The wafer-level packaging process is an important technology used in semiconductor manufacturing, and how to effectively control this manufacturing system is thus an important issue for packaging firms. One way to aid in this process is to use a forecasting tool. However, the number of observations collected in the early stages of this process is usually too few to use with traditional forecasting techniques, and thus inaccurate results are obtained. One potential solution to this problem is the use of grey system theory, with its feature of small dataset modeling. This study thus uses the AGM(1,1) grey model to solve the problem of forecasting in the pilot run stage of the packaging process. The experimental results show that the grey approach is an appropriate and effective forecasting tool for use with small datasets and that it can be applied to improve the wafer-level packaging process.


Sign in / Sign up

Export Citation Format

Share Document