scholarly journals The impact of diverse preprocessing pipelines on brain functional connectivity

Author(s):  
Eva Vytvarova ◽  
Jan Fousek ◽  
Marek Barton ◽  
Radek Marecek ◽  
Martin Gajdos ◽  
...  
Author(s):  
Guilherme M. Balbim ◽  
Olusola A. Ajilore ◽  
Kirk I. Erickson ◽  
Melissa Lamar ◽  
Susan Aguiñaga ◽  
...  

2019 ◽  
Vol 41 (4) ◽  
pp. 943-951
Author(s):  
Sabina Baltruschat ◽  
Antonio Cándido ◽  
Alberto Megías ◽  
Antonio Maldonado ◽  
Andrés Catena

2018 ◽  
Vol 138 ◽  
pp. 35-40 ◽  
Author(s):  
Chao Wang ◽  
Binrang Yang ◽  
Diangang Fang ◽  
Hongwu Zeng ◽  
Xiaowen Chen ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Peter H. Yang ◽  
Carl D. Hacker ◽  
Bhuvic Patel ◽  
Andy G. S. Daniel ◽  
Eric C. Leuthardt

Objective: Resting-state functional MRI (rs-fMRI) has been used to evaluate brain network connectivity as a result of intracranial surgery but has not been used to compare different neurosurgical procedures. Laser interstitial thermal therapy (LITT) is an alternative to conventional craniotomy for the treatment of brain lesions such as tumors and epileptogenic foci. While LITT is thought of as minimally invasive, its effect on the functional organization of the brain is still under active investigation and its impact on network changes compared to conventional craniotomy has not yet been explored. We describe a novel computational method for quantifying and comparing the impact of two neurosurgical procedures on brain functional connectivity.Methods: We used a previously described seed-based correlation analysis to generate resting-state network (RSN) correlation matrices, and compared changes in correlation patterns within and across RSNs between LITT and conventional craniotomy for treatment of 24 patients with singular intracranial tumors at our institution between 2014 and 2017. Specifically, we analyzed the differences in patient-specific changes in the within-hemisphere correlation patterns of the contralesional hemisphere.Results: In a post-operative follow-up period up to 2 years within-hemisphere connectivity of the contralesional hemisphere after surgery was more highly correlated to the pre-operative state in LITT patients when compared to craniotomy patients (P = 0.0287). Moreover, 4 out of 11 individual RSNs demonstrated significantly higher degrees of correlation between pre-operative and post-operative network connectivity in patients who underwent LITT (all P < 0.05).Conclusion: Rs-fMRI may be used as a quantitative metric to determine the impact of different neurosurgical procedures on brain functional connectivity. Global and individual network connectivity in the contralesional hemisphere may be more highly preserved after LITT when compared to craniotomy for the treatment of brain tumors.


2015 ◽  
Vol 44 (1) ◽  
pp. 243-250 ◽  
Author(s):  
Marco Bozzali ◽  
Claire Dowling ◽  
Laura Serra ◽  
Barbara Spanò ◽  
Mario Torso ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Adellah Sariah ◽  
Shuixia Guo ◽  
Jing Zuo ◽  
Weidan Pu ◽  
Haihong Liu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Daniela Lichtman ◽  
Eyal Bergmann ◽  
Alexandra Kavushansky ◽  
Nadav Cohen ◽  
Nina S. Levy ◽  
...  

AbstractIQSEC2 is an X-linked gene that is associated with autism spectrum disorder (ASD), intellectual disability, and epilepsy. IQSEC2 is a postsynaptic density protein, localized on excitatory synapses as part of the NMDA receptor complex and is suggested to play a role in AMPA receptor trafficking and mediation of long-term depression. Here, we present brain-wide structural volumetric and functional connectivity characterization in a novel mouse model with a missense mutation in the IQ domain of IQSEC2 (A350V). Using high-resolution structural and functional MRI, we show that animals with the A350V mutation display increased whole-brain volume which was further found to be specific to the cerebral cortex and hippocampus. Moreover, using a data-driven approach we identify putative alterations in structure–function relations of the frontal, auditory, and visual networks in A350V mice. Examination of these alterations revealed an increase in functional connectivity between the anterior cingulate cortex and the dorsomedial striatum. We also show that corticostriatal functional connectivity is correlated with individual variability in social behavior only in A350V mice, as assessed using the three-chamber social preference test. Our results at the systems-level bridge the impact of previously reported changes in AMPA receptor trafficking to network-level disruption and impaired social behavior. Further, the A350V mouse model recapitulates similarly reported brain-wide changes in other ASD mouse models, with substantially different cellular-level pathologies that nonetheless result in similar brain-wide alterations, suggesting that novel therapeutic approaches in ASD that result in systems-level rescue will be relevant to IQSEC2 mutations.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Federico Calesella ◽  
Alberto Testolin ◽  
Michele De Filippo De Grazia ◽  
Marco Zorzi

AbstractMultivariate prediction of human behavior from resting state data is gaining increasing popularity in the neuroimaging community, with far-reaching translational implications in neurology and psychiatry. However, the high dimensionality of neuroimaging data increases the risk of overfitting, calling for the use of dimensionality reduction methods to build robust predictive models. In this work, we assess the ability of four well-known dimensionality reduction techniques to extract relevant features from resting state functional connectivity matrices of stroke patients, which are then used to build a predictive model of the associated deficits based on cross-validated regularized regression. In particular, we investigated the prediction ability over different neuropsychological scores referring to language, verbal memory, and spatial memory domains. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) were the two best methods at extracting representative features, followed by Dictionary Learning (DL) and Non-Negative Matrix Factorization (NNMF). Consistent with these results, features extracted by PCA and ICA were found to be the best predictors of the neuropsychological scores across all the considered cognitive domains. For each feature extraction method, we also examined the impact of the regularization method, model complexity (in terms of number of features that entered in the model) and quality of the maps that display predictive edges in the resting state networks. We conclude that PCA-based models, especially when combined with L1 (LASSO) regularization, provide optimal balance between prediction accuracy, model complexity, and interpretability.


Author(s):  
Haitao Chen ◽  
Janelle Liu ◽  
Yuanyuan Chen ◽  
Andrew Salzwedel ◽  
Emil Cornea ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document