scholarly journals A comparison of feature extraction methods for prediction of neuropsychological scores from functional connectivity data of stroke patients

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Federico Calesella ◽  
Alberto Testolin ◽  
Michele De Filippo De Grazia ◽  
Marco Zorzi

AbstractMultivariate prediction of human behavior from resting state data is gaining increasing popularity in the neuroimaging community, with far-reaching translational implications in neurology and psychiatry. However, the high dimensionality of neuroimaging data increases the risk of overfitting, calling for the use of dimensionality reduction methods to build robust predictive models. In this work, we assess the ability of four well-known dimensionality reduction techniques to extract relevant features from resting state functional connectivity matrices of stroke patients, which are then used to build a predictive model of the associated deficits based on cross-validated regularized regression. In particular, we investigated the prediction ability over different neuropsychological scores referring to language, verbal memory, and spatial memory domains. Principal Component Analysis (PCA) and Independent Component Analysis (ICA) were the two best methods at extracting representative features, followed by Dictionary Learning (DL) and Non-Negative Matrix Factorization (NNMF). Consistent with these results, features extracted by PCA and ICA were found to be the best predictors of the neuropsychological scores across all the considered cognitive domains. For each feature extraction method, we also examined the impact of the regularization method, model complexity (in terms of number of features that entered in the model) and quality of the maps that display predictive edges in the resting state networks. We conclude that PCA-based models, especially when combined with L1 (LASSO) regularization, provide optimal balance between prediction accuracy, model complexity, and interpretability.

2021 ◽  
Author(s):  
Michele Allegra ◽  
Chiara Favaretto ◽  
Nicholas Metcalf ◽  
Maurizio Corbetta ◽  
Andrea Brovelli

ABSTRACTNeuroimaging and neurological studies suggest that stroke is a brain network syndrome. While causing local ischemia and cell damage at the site of injury, stroke strongly perturbs the functional organization of brain networks at large. Critically, functional connectivity abnormalities parallel both behavioral deficits and functional recovery across different cognitive domains. However, the reasons for such relations remain poorly understood. Here, we tested the hypothesis that alterations in inter-areal communication underlie stroke-related modulations in functional connectivity (FC). To this aim, we used resting-state fMRI and Granger causality analysis to quantify information transfer between brain areas and its alteration in stroke. Two main large-scale anomalies were observed in stroke patients. First, inter-hemispheric information transfer was strongly decreased with respect to healthy controls. Second, information transfer within the affected hemisphere, and from the affected to the intact hemisphere was reduced. Both anomalies were more prominent in resting-state networks related to attention and language, and they were correlated with impaired performance in several behavioral domains. Overall, our results support the hypothesis that stroke perturbs inter-areal communication within and across hemispheres, and suggest novel therapeutic approaches aimed at restoring normal information flow.SIGNIFICANCE STATEMENTA thorough understanding of how stroke perturbs brain function is needed to improve recovery from the severe neurological syndromes affecting stroke patients. Previous resting-state neuroimaging studies suggested that interaction between hemispheres decreases after stroke, while interaction between areas of the same hemisphere increases. Here, we used Granger causality to reconstruct information flows in the brain at rest, and analyze how stroke perturbs them. We showed that stroke causes a global reduction of inter-hemispheric communication, and an imbalance between the intact and the affected hemisphere: information flows within and from the latter are impaired. Our results may inform the design of stimulation therapies to restore the functional balance lost after stroke.


2019 ◽  
Author(s):  
Chaitanya Ganne ◽  
Walter Hinds ◽  
James Kragel ◽  
Xiaosong He ◽  
Noah Sideman ◽  
...  

AbstractHigh-frequency gamma activity of verbal-memory encoding using invasive-electroencephalogram coupled has laid the foundation for numerous studies testing the integrity of memory in diseased populations. Yet, the functional connectivity characteristics of networks subserving these HFA-memory linkages remains uncertain. By integrating this electrophysiological biomarker of memory encoding from IEEG with resting-state BOLD fluctuations, we estimated the segregation and hubness of HFA-memory regions in drug-resistant epilepsy patients and matched healthy controls. HFA-memory regions express distinctly different hubness compared to neighboring regions in health and in epilepsy, and this hubness was more relevant than segregation in predicting verbal memory encoding. The HFA-memory network comprised regions from both the cognitive control and primary processing networks, validating that effective verbal-memory encoding requires multiple functions, and is not dominated by a central cognitive core. Our results demonstrate a tonic intrinsic set of functional connectivity, which provides the necessary conditions for effective, phasic, task-dependent memory encoding.HighlightsHigh frequency memory activity in IEEG corresponds to specific BOLD changes in resting-state data.HFA-memory regions had lower hubness relative to control brain nodes in both epilepsy patients and healthy controls.HFA-memory network displayed hubness and participation (interaction) values distinct from other cognitive networks.HFA-memory network shared regional membership and interacted with other cognitive networks for successful memory encoding.HFA-memory network hubness predicted both concurrent task (phasic) and baseline (tonic) verbal-memory encoding success.


eLife ◽  
2021 ◽  
Vol 10 ◽  
Author(s):  
Federica Contò ◽  
Grace Edwards ◽  
Sarah Tyler ◽  
Danielle Parrott ◽  
Emily Grossman ◽  
...  

Transcranial random noise stimulation (tRNS) can enhance vision in the healthy and diseased brain. Yet, the impact of multi-day tRNS on large-scale cortical networks is still unknown. We investigated the impact of tRNS coupled with behavioral training on resting-state functional connectivity and attention. We trained human subjects for 4 consecutive days on two attention tasks, while receiving tRNS over the intraparietal sulci, the middle temporal areas, or Sham stimulation. We measured resting-state functional connectivity of nodes of the dorsal and ventral attention network (DVAN) before and after training. We found a strong behavioral improvement and increased connectivity within the DVAN after parietal stimulation only. Crucially, behavioral improvement positively correlated with connectivity measures. We conclude changes in connectivity are a marker for the enduring effect of tRNS upon behavior. Our results suggest that tRNS has strong potential to augment cognitive capacity in healthy individuals and promote recovery in the neurological population.


Stroke ◽  
2015 ◽  
Vol 46 (suppl_1) ◽  
Author(s):  
Souvik Sen ◽  
Johann Fridriksson ◽  
Taylor Hanayik ◽  
Christopher Rorden ◽  
Isabel Hubbard ◽  
...  

Background: Intravenous Tissue Plasminogen Activator (TPA) is the only FDA approved medical therapy for acute ischemic stroke (AIS). Prior study suggests that early recanalization is associated with better stroke outcome. Our aim was to correlate task-negative and task-positive (TN/TP) resting state network activity with tissue perfusion and functional outcome, in stroke patients who received TPA. Method: AIS patients were consented and underwent NIH stroke scale (NIHSS) assessment and magnetic resonance imaging (MRI) scans during TPA infusion (baseline) and six hours post stroke. The MRI sequences include contrast-enhanced perfusion weighted image (PWI) and resting state Blood Oxygen Level-Dependent or BOLD (RSB) images acquired using a Siemens Treo 3T MRI scanner. Additionally, the RSB scan and the NIHSS were obtained at a 30-day follow up visit. Results: Fourteen patients (mean age ± SD=63 ±14, 50% male, 50% white, 43% black and 7% others) who qualified for TPA completed the study at baseline and 6 hours post stroke. Of these, 6 patients had valid follow up data at 30 days. Three patients without cerebral ischemia were excluded. A paired samples t-test comparing baseline and 6h post stroke showed a significantly improved TP network t(10)= -4.24 p< 0.05. The resting network connectivity improved from 6 hours post stroke to 30-days follow up, t(5)= -5.35 p< 0.01. Similarly, NIHSS, at 6h post stroke t(10)= 3.62 p< 0.01 and at 30-days follow up t(5)= -3.4 p< 0.01 were significantly better than the NIHSS at baseline. The 6-hours post-stroke perfusion correlated with the resting network connectivity in both the damaged (r=-0.56 p= 0.07) and intact hemispheres (r= -0.57 p= 0.06). Differences in functional connectivity and NIHSS scores from baseline to 6 h were positively correlated (r= 0.56 p=0.07). Conclusion: In this pilot study we found that TPA led to changes in MRI based resting state networks and associated functional outcome. Correlations were found between perfusion, functional connectivity and NIHSS. This suggests that the improvement of resting state network means improved efficiency of brain activity indicated by functional outcome and may be a potential predictive MRI biomarker for TPA response. A larger study is needed to verify this finding.


Author(s):  
Lisa Parikh ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Renata Belfort-DeAguiar ◽  
Derek Groskreutz ◽  
...  

Abstract Context Individuals with type 1 diabetes (T1DM) have alterations in brain activity which have been postulated to contribute to the adverse neurocognitive consequences of T1DM; however, the impact of T1DM and hypoglycemic unawareness on the brain’s resting state activity remains unclear. Objective To determine whether individuals with T1DM and hypoglycemia unawareness (T1DM-Unaware) had changes in the brain resting state functional connectivity compared to healthy controls (HC) and those with T1DM and hypoglycemia awareness (T1DM-Aware). Design Observational study Setting Academic medical center Participants 27 individuals with T1DM and 12 healthy control volunteers participated in the study. Intervention All participants underwent BOLD resting state fMRI brain imaging during a 2-step hyperinsulinemic euglycemic (90 mg/dl)-hypoglycemic (60mg/dl) clamp. Outcome Changes in resting state functional connectivity Results Using two separate methods of functional connectivity analysis, we identified distinct differences in the resting state brain responses to mild hypoglycemia amongst HC, T1DM-Aware and T1DM-Unaware participants, particularly in the angular gyrus, an integral component of the default mode network (DMN). Furthermore, changes in angular gyrus connectivity also correlated with greater symptoms of hypoglycemia (r = 0.461, P = 0.003) as well as higher scores of perceived stress (r = 0.531, P = 0.016). Conclusion These findings provide evidence that individuals with T1DM have changes in the brain’s resting state connectivity patterns, which may be further associated with differences in awareness to hypoglycemia. These changes in connectivity may be associated with alterations in functional outcomes amongst individuals with T1DM.


2016 ◽  
Vol 235 (3) ◽  
pp. 941-948 ◽  
Author(s):  
Haiqing Yang ◽  
Lin Bai ◽  
Yi Zhou ◽  
Shan Kang ◽  
Panpan Liang ◽  
...  

2013 ◽  
Vol 28 (3) ◽  
pp. 260-272 ◽  
Author(s):  
Shasha Li ◽  
Zhenxing Ma ◽  
Shipeng Tu ◽  
Muke Zhou ◽  
Sihan Chen ◽  
...  

Background. Swallowing dysfunction is intractable after acute stroke. Our understanding of the alterations in neural networks of patients with neurogenic dysphagia is still developing. Objective. The aim was to investigate cerebral cortical functional connectivity and subcortical structural connectivity related to swallowing in unilateral hemispheric stroke patients with dysphagia. Methods. We combined a resting-state functional connectivity with a white matter tract connectivity approach, recording 12 hemispheric stroke patients with dysphagia, 12 hemispheric stroke patients without dysphagia, and 12 healthy controls. Comparisons of the patterns in swallowing-related functional connectivity maps between patient groups and control subjects included ( a) seed-based functional connectivity maps calculated from the primary motor cortex (M1) and the supplementary motor area (SMA) to the entire brain, ( b) a swallowing-related functional connectivity network calculated among 20 specific regions of interest (ROIs), and ( c) structural connectivity described by the mean fractional anisotropy of fibers bound through the SMA and M1. Results. Stroke patients with dysphagia exhibited dysfunctional connectivity mainly in the sensorimotor-insula-putamen circuits based on seed-based analysis of the left and right M1 and SMA and decreased connectivity in the bilateral swallowing-related ROIs functional connectivity network. Additionally, white matter tract connectivity analysis revealed that the mean fractional anisotropy of the white matter tract was significantly reduced, especially in the left-to-right SMA and in the corticospinal tract. Conclusions. Our results indicate that dysphagia secondary to stroke is associated with disruptive functional and structural integrity in the large-scale brain networks involved in motor control, thus providing new insights into the neural remodeling associated with this disorder.


2020 ◽  
Vol 3 (2) ◽  
pp. 222-235
Author(s):  
Vivian Nwaocha ◽  
◽  
Ayodele Oloyede ◽  
Deborah Ogunlana ◽  
Michael Adegoke ◽  
...  

Face images undergo considerable amount of variations in pose, facial expression and illumination condition. This large variation in facial appearances of the same individual makes most Existing Face Recognition Systems (E-FRS) lack strong discrimination ability and timely inefficient for face representation due to holistic feature extraction technique used. In this paper, a novel face recognition framework, which is an extension of the standard (PCA) and (ICA) denoted as two-dimensional Principal Component Analysis (2D-PCA) and two-dimensional Independent Component Analysis (2D-ICA) respectively is proposed. The choice of 2D was advantageous as image covariance matrix can be constructed directly using original image matrices. The face images used in this study were acquired from the publicly available ORL and AR Face database. The features belonging to similar class were grouped and correlation calculated in the same order. Each technique was decomposed into different components by employing multi-dimensional grouped empirical mode decomposition using Gaussian function. The nearest neighbor (NN) classifier is used for classification. The results of evaluation showed that the 2D-PCA method using ORL database produced RA of 92.5%, PCA produced RA of 75.00%, ICA produced RA of 77.5%, 2D-ICA produced RA of 96.00%. However, 2D-PCA methods using AR database produced RA of 73.56%, PCA produced RA of 62.41%, ICA produced RA of 66.20%, 2D-ICA method produced RA of 77.45%. This study revealed that the developed face recognition framework algorithm achieves an improvement of 18.5% and 11.25% for the ORL and AR databases respectively as against PCA and ICA feature extraction techniques. Keywords: computer vision, dimensionality reduction techniques, face recognition, pattern recognition


2020 ◽  
pp. 1-10
Author(s):  
Minyi Chu ◽  
Tingting Xu ◽  
Yi Wang ◽  
Pei Wang ◽  
Qiumeng Gu ◽  
...  

Abstract Background Childhood trauma is a vulnerability factor for the development of obsessive–compulsive disorder (OCD). Empirical findings suggest that trauma-related alterations in brain networks, especially in thalamus-related regions, have been observed in OCD patients. However, the relationship between childhood trauma and thalamic connectivity in patients with OCD remains unclear. The present study aimed to examine the impact of childhood trauma on thalamic functional connectivity in OCD patients. Methods Magnetic resonance imaging resting-state scans were acquired in 79 patients with OCD, including 22 patients with a high level of childhood trauma (OCD_HCT), 57 patients with a low level of childhood trauma (OCD_LCT) and 47 healthy controls. Seven thalamic subdivisions were chosen as regions of interest (ROIs) to examine the group difference in thalamic ROIs and whole-brain resting-state functional connectivity (rsFC). Results We found significantly decreased caudate-thalamic rsFC in OCD patients as a whole group and also in OCD_LCT patients, compared with healthy controls. However, OCD_HCT patients exhibited increased thalamic rsFC with the prefrontal cortex when compared with both OCD_LCT patients and healthy controls. Conclusions Taken together, OCD patients with high and low levels of childhood trauma exhibit different pathological alterations in thalamic rsFC, suggesting that childhood trauma may be a predisposing factor for some OCD patients.


Sign in / Sign up

Export Citation Format

Share Document