scholarly journals Assessment of heat gain from server equipment

Author(s):  
N. S. Ponomarev ◽  
◽  
A. Yu. Martianova ◽  
Yu. A. Dmitriev ◽  
◽  
...  

Blade server architecture is widely used as server hardware for datacenters. This article proposes methods for calculating thermal radiation from blade servers at the design and operation stages. In particular, the method for calculating heat gain at the design stage can be used to select equipment for the air conditioning system. The method for calculating heat gains at the operational stage with the current load of IT equipment can be useful for analyzing the operation of existing air conditioning systems or analyzing the energy efficiency of IT equipment in a specification.

2019 ◽  
Vol 6 (3) ◽  
pp. 80-85
Author(s):  
Denis Igorevich Smagin ◽  
Konstantin Igorevich Starostin ◽  
Roman Sergeevich Savelyev ◽  
Anatoly Anatolyevich Satin ◽  
Anastasiya Romanovna Neveshkina ◽  
...  

One of the ways to achieve safety and comfort is to improve on-board air conditioning systems.The use of air cooling machine determines the air pressure high level at the point of selection from the aircraft engine compressor. Because of the aircraft operation in different modes and especially in the modes of small gas engines, deliberately high stages of selection have to be used for ensuring proper operation of the refrigeration machine in the modes of the aircraft small gas engines. Into force of this, most modes of aircraft operation have to throttle the pressure of the selected stage of selection, which, together with the low efficiency of the air cycle cooling system, makes the currently used air conditioning systems energy inefficient.A key feature of the architecture without air extraction from the main engines compressors is the use of electric drive compressors as a source of compressed air.A comparative analysis of competing variants of on-board air conditioning system without air extraction from engines for longrange aircraft projects was performed at the Moscow Aviation Institute (National Research University).The article deals with the main approaches to the decision-making process on the appearance of a promising aircraft on-board air conditioning system at the stage of its conceptual design and formulated the basic requirements for the structure of a complex criterion at different life cycle stages.The level of technical and technological risk, together with a larger installation weight, will require significant costs for development, testing, debugging and subsequent implementation, but at the same time on-board air conditioning system scheme without air extraction from the engines will achieve a significant increase in fuel efficiency at the level of the entire aircraft.


2014 ◽  
Vol 493 ◽  
pp. 74-79
Author(s):  
Y.A. Sabtalistia ◽  
S.N.N. Ekasiwi ◽  
B. Iskandriawan

Energy consumption for air conditioning systems (air conditioning system) increased along with the increasing need for fresh air and comfortable in the room especially apartments. FAC system (Floor Air Conditioning) is growing because it is more energy efficient than CAC (Ceiling Air Conditioning) system. However, the position of the AC supply is on the lower level at the FAC system causes draft discomfort becomes greater as air supply closer to the occupants so that thermal comfort can be reduced. Heat mixture of windows, exterior walls, kitchen, and occupants in the studio apartment affect thermal comfort in the room too.This study aims to determine the position of the AC supply which has the best thermal comfort of FAC system in the studio apartment. It can be done by analyzing ADPI (Air Diffusion Performance Index), the distribution of air temperature, wind speed, RH (Relative Humidity), and DR (Draft Risk) to change the position of the AC supply supported by CFD (Computational Fluid Dynamics) simulation.This result prove that AC position 2 (on wall near the kitchen) is more comfortable than AC position 1 (on the bathroom wall) because AC position 2 away from occupied areas, thereby reducing the occurrence of draught discomfort.


2005 ◽  
Vol 16 (4) ◽  
pp. 59-66 ◽  
Author(s):  
V Mittal ◽  
KS Kasana ◽  
NS Thakur

An air-conditioning system utilizing solar energy would generally be more efficient, cost wise, if it was used to provide both heating and cooling requirements in the building it serves. Various solar powered heating systems have been tested extensively, but solar powered air conditioning systems have received very little attention. Solar powered absorption cooling systems can serve both heating and cooling requirements in the building it serves. Many researchers have studied the solar absorption air conditioning system in order to make it economically and technically viable. But still, much more research in this area is needed. This paper will help many researchers working in this area and provide them with fundamental knowledge on absorption systems, and a detailed review on the past efforts in the field of solar absorption cooling systems with the absorption pair of lithium-bromide and water. This knowledge will help them to start the parametric study in order to investigate the influence of key parameters on the overall system performance.


Author(s):  
Somaye A. Mohamadi ◽  
Abdulraheem J. Ahmed

<span>Despite their complexity and uncertainty, air conditioning systems should provide the optimal thermal conditions in a building. These controller systems should be adaptable to changes in environmental parameters. In most air conditioning systems, today, there are On/Off controllers or PID in more advanced types, which, due to different environmental conditions, are not optimal and cannot provide the optimal environmental conditions. Controlling thermal comfort of an air conditioning system requires estimation of thermal comfort index. In this study, fuzzy controller was used to provide thermal comfort in an air conditioning system, and neural network was used to estimate thermal comfort in the feedback path of the controller. Fuzzy controller has a good response given the non-linear features of air conditioning systems. In addition, the neural network makes it possible to use thermal comfort feedback in a real-time control.</span>


2019 ◽  
Vol 95 (3) ◽  
pp. 296-301
Author(s):  
U. A. Rakhmanin ◽  
S. E. Shibanov ◽  
Sergey V. Kozulya

Purpose of work is a compilation of data about the microflora which colonizes a split-system, with the aim of selection of sanitary-indicative microorganisms, whose presence in the sample would indicate to the need for cleaning and disinfection of split-systems. Materials and methods. In the article there were used data of five years author’s scientific inquiry, related to the prevention of respiratory diseases, associated with the usage of a local air conditioning systems. We also use the data from the literature. Results. For selection of “indicative” microorganisms, we proposed the usage of nine criteria, each of them have numeric value from 0 to 3 points (risk for health, prevalence rate of the disease, epidemiological link, speed of split system’s colonization, difficulty of cultivation, resistance in the environment, resistance to disinfectants, frequency of detection in home air conditioning systems, frequency of detection in air conditioning systems of public buildings). After the calculation Pseudomonas aeruginosa and Staphylococcus aureus received maximal score (20 points). Therefore, these two types of bacteria are indicative microorganisms. The detection of these microorganisms in split systems will indicate to the contamination of air-conditioning system. This microflora also is a criterion of cleaning and disinfection quality - presence of these microorganisms in the samples after this process will mean that the processing of air conditioning systems was performed poorly. Conclusions. Split systems are very faster colonized by conditionally pathogenic and pathogenic microflora. To prevent the possible hazard for population’s health it is necessary to develop the normative base, according to which sanitary-and-hygienic control over the split-systems working must be carried out. Proposed criteria suggest that Pseudomonas aeruginosa and Staphylococcus aureus are indicative microorganisms, and it’s identification in the air-conditioning system would mean risk for health and necessity for cleaning and disinfection.


Author(s):  
V. Stepanenko ◽  
Y. Veremiichuk

The implementation of an integrated energy supply system is an effective way to increase energy efficiency, reduce CO2 emissions and increase the use of renewable energy, as well as provide opportunities for energy production, conversion and storage in interconnected infrastructures for energy system operators and consumers. Also, increasing the level of energy efficiency of the energy supply system is one of the important strategies to slow down the growth of demand and mitigate the negative impact on health, the economy and the environment. The article considers the integrated use of energy, the introduction of energy hubs as part of future energy networks and proposes a schematic diagram of an integrated energy supply system. The article presents the results of modeling and computational experiment of ventilation and air conditioning systems in the integrated power supply system, taking into account the technical and operational characteristics of SES, regulatory and technical documents and building codes. According to the results of the study, it is established that the schedule of SES generation and the schedule of electricity consumption by ventilation and air conditioning systems are similar, which leads to a reduction in operating costs and a reduction in the load on the building's power supply system. The scientific substantiation of the integration of the energy storage system into the energy supply structure has been further developed, which will ensure the reliability of the power supply and the efficiency of the solar power plant.


Author(s):  
Ghezlane Halhoul Merabet ◽  
Mohamed Essaaidi ◽  
Driss Benhaddou

Thermal comfort is closely related to the evaluation of heating, ventilation, and air conditioning systems. It can be seen as the result of the perception of the occupants of a given environment, and it is the product of the interaction of a number of personal and environmental factors. Otherwise, comfort issues still do not play an important role in the daily operation of commercial buildings. However, in the workplace, local quality effects, in addition to the health, the productivity that has a significant impact on the performance of the activities. In this regard, researchers have conducted, for decades, investigations related to thermal comfort and indoor environments, which includes developing models and indices through experimentations to establish standards to evaluate comfort and factors and set-up parameters for heating, ventilation, and air conditioning systems. However, to our best knowledge, most of the research work reported in the literature deals only with parameters that are not dynamically tracked. This work aims to propose a prototype for comfort measuring through a wireless sensor network and then presenting a model for thermal comfort prediction. The developed model can be used to set up a heating, ventilation, and air conditioning system to meet the expected comfort level. In particular, the obtained results show that there is a strong correlation between users’ comfort and variables such as age, gender, and body mass index as a function of height and weight.


Sign in / Sign up

Export Citation Format

Share Document