scholarly journals Observations on the effect of organic materila upon aggregation and nitrate-nitrogen content of soil

1952 ◽  
Vol 24 (3) ◽  
pp. 127-134
Author(s):  
Armi Kaila ◽  
Pertti Kivinen

In the experiments reported above the effect of organic material upon the aggregation of soil particles and the simultaneous immobilization of mineral nitrogen by microorganisms were studied. The relative amount of water-stable aggregates larger than 0.5 mm in diameter was considered to indicate the aggregation state of the soil samples. Probably, somewhat different results were obtained if the crumb formation had been determined by some other method, but it is not sure that these would have been more reliable. Since the incubation of soil samples were performed under aerobic conditions, and all the samples were mineral soils, it seemed justifiable to take the nitrate-nitrogen content of the soil samples to characterize the amount of mineral nitrogen in them. On the basis of the results the general conclusion may be drawn that the more favourable the conditions are for the development of an active and large microflora in the soil, the more intensively the crumb formation and the immobilization of nitrogen takes place, but also the destruction of aggregates begins the more rapidlv. This appeared to be true with regard to the indigenous fertility of soil as well as to the fertilization. Liming, however, did not improve the conditions in these experiment, probably due to the rather slight acidity of the soil samples used. Under otherwise similar conditions the larger amount of straw produced larger amount of aggregates, but the differences in the nitrate-nitrogen content of soil in the presence of various amounts of straw were neglibigle. Generally, the degree of immobilization of soil nitrogen seemed largely to depend on the properties of soil and on other environmental conditions, and nitrogen applications, theoretically enough for the needs of microorganisms that decomposed the straw, could not always prevent an intensive absorption of soil nitrogen. The crumb formation appeared to need mere energy-yielding material than the immobilization of nitrogen, or the destruction of crumbs occurred more rapidly than the nitrification of microbiologically bound nitrogen.

1969 ◽  
Vol 49 (3) ◽  
pp. 313-318 ◽  
Author(s):  
D. C. Munro

Initial nitrate-nitrogen content of the soil gave a correlation coefficient (r) of 0.93 with yields and with total nitrogen uptake of Brussels sprouts plants (Brassica oleracea var. gemmifera DC., Jade Cross). Soil nitrogen extracted with 0.01 M NaHCO3 gave r values of 0.76 with yields and 0.75 with nitrogen uptake. Nitrate incubation results from leached, moist soil samples gave r values of 0.59 with yields and 0.56 with nitrogen uptake. However, air-drying of soil samples prior to leaching and incubation resulted in r values of only 0.15 and 0.11 with yields and nitrogen uptake, respectively. Available nitrogen determined by incubation without previous leaching of the soil samples gave high r values because of the influence of the initial nitrate nitrogen in the soil.


1985 ◽  
Vol 104 (3) ◽  
pp. 609-613 ◽  
Author(s):  
K. N. Sharma ◽  
A. L. Bhandari ◽  
M. L. Kapur ◽  
D. S. Rana

SummaryThe results on the influence of various crops in five different fixed rotations on the ohanges in nitrate and total N content of soils are reported. Groundnut contributed largely to the accumulation of nitrate nitrogen in the soil profile (to a depth of 120 cm). Bajra fodder exhausted the soil nitrogen reserve to a great extent. Wheat and maize, in a rotation, reduced nitrate leaching to deeper soil layers. Summer moong also left a large amount of unabsorbed nitrate in the profile. Total nitrogen content of the soil decreased after the harvest of cereals. Maximum depletion occurred after the harvest of bajra crop. Potato (a crop which received a heavy dressing of N fertilizer) and legumes contributed to the soil N reserve. A balance sheet of N indicated net gains of total soil N in four of the five cropping sequences. A net loss of 75 kg N/ha was observed in bajra fodder-potato-wheat rotation.


1958 ◽  
Vol 30 (1) ◽  
pp. 114-124
Author(s):  
Armi Kaila

The influence of superphosphate on the mobilization of nitrogen in a fen soil from Leteensuo Experiment Station in southern Finland was studied. Samples were used from a field trial in which superphosphate had been annually applied for 35 years in amounts of 0, 100, 200, and 300 kg/ha, resp. Analyses were performed on samples of four layers: 0 to 10 cm, 10 to 20 cm, 40 to 50 cm, and 60 to 70 cm. It was found that the mineral nitrogen (NH4-N + NO3-N) content of the soil samples collected late in the autumn was in all layers highest in the plots treated with the highest amount of superphosphate. The positive effect of the treatment with 200 kg/ha of superphosphate reached down to the layer of 40 to 50 cm. In the soil treated with 100 kg/ha the mineral nitrogen content was higher than in the untreated soil only in both surface layers. In the incubation experiment of five and ten weeks the differences in the mineral nitrogen content were equalized, particularly in the samples from deeper layers. In the top layers the superiority of the heaviest treatment was maintained. The amounts of nitrogen in the hay yields harvested in the previous summer appeared, generally, to be the higher the larger the amounts of superphosphate applied. It seemed to be probable that potassium was a minimum factor in the plots of the heaviest superphosphate treatment. Comparison of the present results with data obtained from the same experiment when it had been only run for five years indicated that, in regard to the availability of nitrogen in this peat soil, the slight tendency found thirty years ago had grown to the distinct superiority of the heavy superphosphate treatment.


2020 ◽  
Vol 143 ◽  
pp. 02023
Author(s):  
Pei Zhiqiang ◽  
Lu Shuchang ◽  
Wang Xi ◽  
Hou Kun ◽  
Ya Zongjie ◽  
...  

In order to improve the utilization rate of nitrogen fertilizer and reduce the environmental pollution risk of the nitrogen accumulation in the vegetable field, this study was carried out in the summer leisure period of the greenhouse vegetable production. This experiment designed different planting density treatments in 2017 and 2018, i.e. for catch waxy corn, 3300 plants/667m2 (WCD1), 5000 plants/667m2 (WCD2), 6600 plants/667m2 (WCD3), for forage sweet sorghum, 4500 plants /667m2 (FSS4), 7000 plants/667m2 (FSS5), 9000 plants/667m2 (FSS6) in 2017; and for catch waxy corn, 4500 plants/667m2 (WCDI), 7000 plants/667m2 (WCDII), 9000 plants/667m2(WCDIII), for forage sweet sorghum, 7000 plants/667m2 (FSSIV), 10000 plants/667m2 (FSSV), 14000 plants/667m2 (FSSVI) in 2018. The results showed that the biomass and nitrogen absorption of the two catch crops began to improve and then decreased with the increase of planting density. The nitrogen absorption amount of the catch waxy corn and forage sweet sorghum was 22.36~28.68 kg/667m2,21.67~24.39 kg/667m2, respectively. Different planting density of catch waxy corn and forage sweet sorghum could significantly reduce the total nitrogen content of 0~30cm soil layer and the nitrate nitrogen content of 0~90cm soil layer, for catch waxy corn and forage sweet sorghum, the reduction rate of total nitrogen content in 0~30cm soil layer was 9.6%~27.0%, 5.7%~23.5%, the reduction rate of nitrate nitrogen content reached 50.0%~90.8%, 80.1%~96.4%, respectively, which effectively controlled the nitrate nitrogen leaching to soil deep layer. Planting catch crops could increase soil urease activity, regulate soil nitrogen transformation. Compared with other treatments, WCDII and FSSV treatment can reduce the initial urease activity and soil nitrate nitrogen content of next crops, which is consistent with the nutrient requirements of broccoli in the early stage of growth. These catch crops planting could reduce the nitrogen environmental risk in the greenhouse soil. Finally, the study proposed that the suitable planting density of catch waxy corn and forage sweet sorghum planted was 6600~7000 plants/667m2, and 9000~10000 plants/667m2, respectively, in the greenhouse summer leisure period. It is more advantageous to improve soil nitrogen absorption and reduce soil nitrogen environmental risks for catch waxy corn.


2021 ◽  
Vol 76 (4) ◽  
pp. 63-78
Author(s):  
Halina Lipińska ◽  
Ilona Woźniak-Kostecka ◽  
Anna Kocira ◽  
Wojciech Lipiński ◽  
Stanisław Franczak ◽  
...  

Grasslands provide many ecosystem services. Apart from being a source of fodder for animals, grasslands regulate water and soil quality by reducing nitrogen emissions to the environment. The aim of the study was to determine the biophysical and monetary value of ecosystem services of grassland based on the “mineral nitrogen content in the soil layer 60–90 cm” indicator depending on the method of use and the type of soil, against the cultivation of maize for green fodder. The study area encompassed three provinces, different in terms of soil use, livestock population and intensity of grassland use. The investigation indicated that the value of ecosystem services provided by grasslands varied spatially and depended on the type of use and type of soil. In mineral soils, the lowest levels of this index were recorded from sites used for pasturing, while the highest levels were found under maize crops. In organic soils (without maize crops), the smallest losses of Nmin were observed in meadows while the highest losses were in pastures. Nmin losses in organic soils were higher than in mineral soils. The losses observed were highest in Opolskie Province, followed by Podlaskie Province, with the lowest losses in Lubelskie Province.


2018 ◽  
Vol 64 (No. 7) ◽  
pp. 289-295
Author(s):  
Holík Ladislav ◽  
Rosíková Jana ◽  
Vranová Valerie

The soil nitrogen cycle and the dynamics of its transformation are closely related to the functioning of the forest ecosystem. This cycle, and the availability of nitrogen as a necessary nutrient in the soil, can be influenced by the process of thinning. The aim of this study is to describe the impact of silvicultural measures on the content of ammonium and nitrate nitrogen in forest soil. Attention is paid to the organic (spruce treatments) and organomineral horizon (beech treatments) in which the transformation of soil nitrogen is most pronounced. Spruce treatments at the Rájec-Němčice area and beech stands at the Březina area, both in the region of Drahanská vrchovina (Czech Republic), were selected for the experiments. Two variants of thinning thinning from below and thinning from above, were performed in the spruce treatments, and thinning from above was performed in the beech treatments. Control variants with no silvicultural measures were defined in both treatments. The amount of ammonium nitrogen in the spruce treatments with thinning from above was in most cases higher than in the other variants. On the contrary, in variant with thinning from below, the ammonium nitrogen content decreased. In terms of the nitrate nitrogen content, the values were generally higher for variants with silvicultural measures than for the control variants. In the beech treatments, the amount of ammonium nitrogen increased and, on the contrary, there was a small decrease in the amount of nitrate nitrogen due to the effect of thinning from above. The differences between thinning from above and the control variants in the beech treatments were less noticeable than in the spruce treatments. Overall, however, it can be said that the nitrogen content available to the vegetation increased. The results of the given experiment provide insight into the trends of nitrogen mineralization intensity in stands in which silvicultural measures are performed.


Author(s):  
A. H. Kumar Naik ◽  
B. M. Madhu ◽  
Parashuram Chandravamshi ◽  
M. Hanumanthappa

A study was conducted to an assessment of physico-chemical properties of soil of Chikknayakana Hally (CNH), Koratigere (KTG), Madhugiri (MDG) Pavagada (PVG), Sira and Tiptur (TPT) taluks of Tumkur district was carried out in 2018-2019 under natural farming. The main objectives of this study was to carried out the survey, collection of information and analysis of chemical properties of soil. Totally 952 soil samples were collected at a depth of 0-15 cm and the study revealed that pH ranged 3.70-7.50 acidic to neutral, and EC is slightly saline in nature. Available nitrogen content ranged from 46.5-657.1 kg ha-1, phosphorus from 5.4-267.7 kg ha-1and potassium status in soils of different taluks ranged from 17.25 to 667 kg ha-1. Maximum soil samples of the area showed sufficient in manganese, Cu and Fe status, but Zinc and boron were deficient.


Euphytica ◽  
2021 ◽  
Vol 217 (1) ◽  
Author(s):  
Wenqing Tan ◽  
Di Zhang ◽  
Nana Yuyama ◽  
Jun Chen ◽  
Shinichi Sugita ◽  
...  

2021 ◽  
Vol 1036 (1) ◽  
pp. 012035
Author(s):  
A C Ekeleme ◽  
O H Ibearugbulem ◽  
E I Ugwu ◽  
C E Njoku ◽  
E C Amanamba ◽  
...  

2011 ◽  
Vol 3 (5) ◽  
pp. 37-42
Author(s):  
Renata Mikalauskienė ◽  
Donatas Butkus ◽  
Ingrida Pliopaitė Bataitienė

The present article describes changes in specific activities and fluctuations in the ratio of natural 40K and artificial 137Cs radionuclides in soil samples taken from different places of Lithuanian territory. The samples of soil have been selected from the districts polluted after the accident in Chernobyl nuclear plant performing nuclear testing operations. The study has established the main physical and chemical properties of soil samples and their impact on the concentration of 40K activities. 137Cs/40K specific activities in soil have been observed under the dry weight of the sample that varied from 0.0034 to 0.0240. The results of the study could be used for establishing and estimating 137Csand 40K transfer in the system “soil-plant”. Santrauka Straipsnyje nagrinėjama gamtinės (40K) ir dirbtinės (137Cs) kilmės radionuklidų savitųjų aktyvumų ir jų santykio kaita skirtinguose Lietuvos teritorijos dirvožemiuose. Dirvožemio mėginiai parinkti iš vietovių, kurios buvo labiau užterštos po Černobylio atominės elektrinės avarijos ir buvusių branduolinių bandymų. Tyrimo metu nustatytos pagrindinės fizinės cheminės dirvožemio savybės ir jų poveikis 40K aktyvumų koncentracijai. 137Csir 40K savitieji aktyvumai dirvožemyje tirti esant sausam mėginio svoriui. 137Cs savitieji aktyvumai sausame dirvožemyje svyravo nuo 1,1±1,0 iki 14,3±0,9 Bq/kg, o 40K savitieji aktyvumai – nuo 326±29 iki 740±15 Bq/kg. 137Csir 40K savitųjų aktyvumų santykis skirtingų vietovių dirvožemiuose kito nuo 0,0034 iki 0,0240 Bq/kg. Tyrimo rezultatai gali būti panaudoti, nustatant ir įvertinant 137Csir 40K pernašą sistemoje dirvožemis–augalai.


Sign in / Sign up

Export Citation Format

Share Document