scholarly journals Chemical weed control in winter wheat: Efficiency and economic return

1979 ◽  
Vol 51 (1) ◽  
pp. 521-527
Author(s):  
Juhani Uoti ◽  
Tuomo Juvankoski

In field trials in Vihti during the years 1968—1978 the average yield increase in winter wheat obtained with chemical Weed control was 439 kg/ha with a yield level of 3 704 kg/ha. The moisture content in percentages was 1.2 % lower in the sprayed plots than in the unsprayed plots. The number and the dry weight of weeds was greatly reduced by the spraying. The producer price for the wheat being at present 1 mk/kg, the value of the yield increase for the farmer is 439 mk/ha, whereas the decrease of the moisture content saves in drying costs 36 mk/ha. When the spraying costs estimated at 153 mk/ha have been deducted from these figures, the net return for the farmer is 322 mk/ha.

2010 ◽  
Vol 24 (3) ◽  
pp. 262-268 ◽  
Author(s):  
John C. Frihauf ◽  
Phillip W. Stahlman ◽  
Patrick W. Geier

Growth chamber experiments were conducted in the fall of 2006 and spring of 2007 to determine winter wheat, flixweed, and henbit response to POST treatments of saflufenacil at 13, 25, and 50 g ai ha−1 applied alone and in combinations with bentazon at 560 g ai ha−1 or 2,4-D amine at 533 g ae ha−1 and nonionic surfactant (NIS) at 0.25% v/v. Mixtures of saflufenacil and 2,4-D amine were also applied without NIS. Necrosis was observed on wheat leaves within 1 d after treatment (DAT) and peaked at 5 to 7 DAT. Saflufenacil at 13, 25, or 50 g ai ha−1 applied alone or in combination with 533 g ae ha−1 of 2,4-D amine plus NIS caused 19 to 38% (alone) and 24 to 40% (in combination) wheat foliar necrosis, respectively. Foliar necrosis of wheat was 14% or less when saflufenacil, at any rate, was mixed with bentazon or 2,4-D amine without NIS. Combinations of saflufenacil at any of the rates tested plus bentazon and NIS did not reduce wheat dry weight. Saflufenacil plus 2,4-D amine without adjuvant resulted in similar wheat dry weights as 2,4-D amine. Saflufenacil plus 2,4-D amine without NIS provided 99% control of flixweed at 21 DAT, but henbit control ranged from 81 to 88%. In comparison, saflufenacil at 50 g ha−1 mixed with bentazon and NIS controlled flixweed at 92% and henbit at 63% at 21 DAT. This research indicates saflufenacil has potential for POST use in winter wheat to control winter annual broadleaf weeds when tank-mixed with 2,4-D amine without NIS, but additional research is needed to discover ways to improve crop safety without reducing weed control.


1977 ◽  
Vol 57 (4) ◽  
pp. 1049-1054 ◽  
Author(s):  
D. B. FOWLER ◽  
L. V. GUSTA

Changes in cold hardiness (LT50), fresh weight, dry weight and moisture content were measured on crowns of winter wheat (Triticum aestivum L.) and rye (Secale cereale L.) taken from the field at weekly intervals in the spring of 1973 and 1974 at Saskatoon, Sask. In all trials, Frontier rye came out of the winter with superior cold hardiness and maintained a higher level of hardiness during most of the dehardening period. For cultivars of both species, rapid dehardening did not occur until the ground temperature at crown depth remained above 5 C for several days. Changes in crown moisture content tended to increase during dehardening. Over this same period crown dry weight increased for winter rye but did not show a consistent pattern of change for winter wheat. Two test sites were utilized in 1974. One site was protected by trees and the other was exposed. General patterns of dehardening were similar for these two sites, but cultivar winter field survival potentials were reflected only by LT50 ratings for the exposed test site. The influence of fall seeding date on spring dehardening was also investigated. Late-seeded wheat plots did not survive the winter in all trials. However, where there was winter survival, no differences in rate of dehardening due to seeding date were observed.


2021 ◽  
Vol 10 (1) ◽  
pp. 343-355
Author(s):  
Dan David. Quee ◽  
Philip Jimia. Kamanda ◽  
Musa Decius. Saffa ◽  
Johnny Ernest. Norman

Field trials were conducted in savannah woodland (Njala) and rainforest (Serabu) agroclimatic regions of Sierra Leone during 2016 second cropping season to assess different preemergence herbicides techniques that is efficient, cost effective and environmentally safe in cowpea production. The experiment consisted of 20 treatments which included 2 cowpea genotypes (slipea 4 and slipea 5) and 10 different weed control techniques viz: butachlor 50% emulsifiable concentrate (EC), double force®, power force® applied as preemergence herbicides at 2, 4 and 6 L ha-1, respectively and weedy check. The treatments were laid out in a strip-plot design arranged in a factorial system with three replications. The results of this study revealed that the application of power force® at 6 L ha-1 recorded the highest phytotoxic effect, lowest weed dry weight, number of pods per plant and grain yield, highest total variable cost, lowest gross and net returns. Furthermore, butachlor 50% EC at 2 L ha-1 closely followed by double force® at 6 L ha-1 resulted in maximum grain yield, gross and net returns compared to the rest of the other weed control techniques. Thus, it is concluded that butachlor 50% EC at 2 L ha-1 was more economical, profitable and beneficial than other control treatments in the production of cowpea genotypes in the savannah woodland and rainforest agroclimatic regions of Sierra Leone. Conclusively, the relationship between phytotoxicity and grain yield indicates that the higher the grain yield the lower the phytotoxic effects of the chemicals.


2020 ◽  
Vol 4 (2) ◽  
pp. 8-15
Author(s):  
O. Danmaigoro ◽  
M. I. Zamfara ◽  
H. Yakubu ◽  
Musa M. Umar

Field trials were conducted in 2017 and 2018 wet seasons at Federal University Dutse Teaching and Research Farm (Latitude 11 46, 39”N and Longitude 9 20, 30”E) in the Sudan Savanna of Nigeria. To evaluate performance of sesame varieties as affected by poultry manure and weed control methods. The treatments consisted of five weed control treatments (pre-emergence application of ButachlorEC50%,  hoe weeding at 3WAS +pre-emergence butachlor EC50%, pre-emergence butachlor EC50%+hoe weeding at 3 and 6WAS, hoe weeding @ 3 and 6WAS and weedy check), three level of poultry manure (5, 10, and 15t/ha) and three sesame varieties (Ben 01, Yandev 55 and Ben 04E. The treatments were laid out in split plot design and replicated three times. The results indicated that weed control methods had significant effect (0.05) on the sesame growth and seed yield comparable to hoe weeding control at 3 and 6WAS where plant height number of leaves,  capsule number per plant and seed yield of sesame were significant higher with the application of butachlor plus hoe weeding at 3 and 6WAS compared to others weed control methods.  Poultry manure application on sesame as 15t/ha gave taller plant height, more number of leaves, higher sesame dry weight, longer capsule length and seed yield of sesame than the other rates while Ben 01(455 and 1043 ) perform better than the others two varieties (Yandev 498, 756 and Ben4E 522 and 765 ) for 2017 and 2018 seasons.  In conclusion,       


2006 ◽  
Vol 20 (4) ◽  
pp. 862-866 ◽  
Author(s):  
Peter H. Sikkema ◽  
Darren E. Robinson ◽  
Christy Shropshire ◽  
Nader Soltani

Weed management is a major production issue facing otebo bean growers in Ontario. Field trials were conducted at six Ontario locations during a 2-yr period (2003 and 2004) to evaluate the tolerance of otebo bean to the preplant incorporated (PPI) application of EPTC at 4,400 and 8,800 g ai/ha, trifluralin at 1,155 and 2,310 g ai/ha, dimethenamid at 1,250 and 2,500 g ai/ha,S-metolachlor at 1,600 and 3,200 g ai/ha, and imazethapyr at 75 and 150 g ai/ha. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI resulted in minimal (less than 5%) visual injury and with exception of the low rate of dimethenamid causing a 16% reduction in shoot dry weight and the high rate causing an 8% plant height reduction had no adverse effect on plant height, shoot dry weight, seed moisture content, and yield. Imazethapyr applied PPI caused up to 7% visual injury and reduced plant height, shoot dry weight, and yield 8, 18, and 12% at 75 g/ha and 19, 38, and 27% at 150 g/ ha, respectively. Seed moisture content was also reduced by 0.4% with both rates. Based on these results, otebo bean is not tolerant of imazethapyr applied PPI at rates as low as 75 g/ha, the proposed use rate. EPTC, trifluralin, dimethenamid, andS-metolachlor applied PPI have a 2× rate crop safety margin for use in otebo bean weed management.


2004 ◽  
Vol 18 (4) ◽  
pp. 893-901 ◽  
Author(s):  
Peter H. Sikkema ◽  
Nader Soltani ◽  
Christy Shropshire ◽  
Todd Cowan

Weed control in white beans is currently limited by the small number of registered herbicides. The tolerance of two white bean cultivars, ‘AC Compass’ and ‘OAC Thunder’, to various postemergence (POST) herbicides at the maximum use rate and twice the maximum use rate for soybean or corn was evaluated at two Ontario locations in 2001 and 2002. Generally, the two cultivars did not differ in their response to the POST herbicides. POST applications of imazamox plus fomesafen, imazamox plus bentazon, and cloransulam-methyl decreased plant height, shoot dry weight, and yield by as much as 29, 41, and 55%, respectively, and increased seed moisture content up to 3.9%. POST applications of thifensulfuron, chlorimuron, and bromoxynil decreased plant height as much as 57%, shoot dry weight by up to 71%, yield as much as 93% and increased seed moisture content up to 15.5%. Based on these results, AC Compass and OAC Thunder white beans do not possess sufficient tolerance to support the registration of imazamox plus bentazon, imazamox plus fomesafen, cloransulam-methyl, thifensulfuron, chlorimuron, and bromoxynil.


Weed Science ◽  
2011 ◽  
Vol 59 (4) ◽  
pp. 546-552 ◽  
Author(s):  
Rick A. Boydston ◽  
Matt J. Morra ◽  
Vladimir Borek ◽  
Lydia Clayton ◽  
Steven F. Vaughn

Weed control in organic onion production is often difficult and expensive, requiring numerous cultivations and extensive hand weeding. Onion safety and weed control with mustard seed meal (MSM) derived from Sinapis alba was evaluated in greenhouse and field trials. MSM applied at 110, 220, and 440 g m−2 severely injured onions and reduced onion stand by 25% or more when applied from planting to the one-leaf stage of onions in greenhouse trials. MSM derived from mustard cultivars ‘IdaGold’ and ‘AC Pennant’ reduced plant dry weight of redroot pigweed with an effective dose that provided 90% weed control (ED90) of 14.5 and 3.2 g m−2, respectively, in greenhouse trials, whereas the ED90 of MSM from a low-glucosinolate cultivar ‘00RN29D10’ was 128 g m−2, suggesting that glucosinolate content and ionic thiocyanate (SCN−) production contribute to phytotoxicity of MSM. In field trials, weed emergence, onion injury, and onion yield were recorded following single or three sequential applications of MSM from 1.1 to 4.5 MT ha−1 beginning at the two-leaf stage of onions in 2008, 2009, and 2010. By 8 wk after treatment (WAT), onion injury following MSM sequential applications was 10% or less in all 3 yr. Combined over 2008 and 2009, 48 and 68% fewer weeds emerged 3 WAT with MSM at 2.2 and 4.5 MT ha−1, respectively. In 2010, MSM at 2.2 and 4.5 MT ha−1 reduced the number of weeds emerged 4 WAT by 91 and 76%, respectively. MSM treatment did not significantly affect onion yield or size in 2008 and 2009, but in 2010 onion total yield was reduced by 29% by three sequential applications of MSM at 2.2 MT ha−1. MSM has potential to be used as a weed-suppressive amendment in organic production systems, but the risk of crop injury is substantial.


2004 ◽  
Vol 57 ◽  
pp. 45-48 ◽  
Author(s):  
F. Dastgheib

Field trials were undertaken over three years to determine the effect of tine weeding in organic pea (Pisum sativum) crops in Canterbury The tine weeding treatments were performed either as single or repeated passes at different times of crop growth Significant weed control and yield increase were achieved with a single pass of tine weeding either at preemergence or at the 2leaf stage of the crop On some occasions two passes of tine were required to control new weeds Late postemergence tine weeding did not have a positive effect on pea yield


2012 ◽  
Vol 92 (2) ◽  
pp. 297-302 ◽  
Author(s):  
Nader Soltani ◽  
Christy Shropshire ◽  
Peter H. Sikkema

Soltani, N., Shropshire, C. and Sikkema, P. H. 2012. Co-application of glyphosate plus an insecticide or fungicide in glyphosate-resistant soybean. Can. J. Plant Sci. 92: 297–302. Six field trials were conducted from 2008 to 2010 in Ontario to evaluate soybean injury and weed control efficacy with glyphosate tankmixed with various insecticides or fungicides. There was minimal visual injury (less than 4%) in glyphosate-resistant soybean and no adverse effect on soybean height and yield when cyhalothrin-lambda (Matador®), dimethoate (Lagon®), imidacloprid/deltamethrin (Concept®), spirotetramat (Movento®), pyraclostrobin (Headline®), azoxystrobin (Quadris®), propiconazole (Tilt®), azoxystrobin/propiconazole (Quilt®), tebuconazole (Folicur®) and trifloxystrobin/propiconazole (Stratego®) were tankmixed with glyphosate. Velvetleaf, pigweed species, common ragweed, common lambsquarters and green foxtail control ranged from 91–97, 94–99, 92–99, 80–94 and 98–100%, respectively. However, there was no adverse effect on velvetleaf, pigweed, common ragweed, common lambsquarters and green foxtail control, density and dry weight when one of the insecticides or fungicides evaluated was tankmixed with glyphosate. Based on these results, glyphosate tankmixed with cyhalothrin-lambda, dimethoate, imidacloprid/deltamethrin, spirotetramat, pyraclostrobin, azoxystrobin, propiconazole, azoxystrobin/propiconazole, tebuconazole or trifloxystrobin/propiconazole causes minimal crop injury and has no adverse effect on weed control in glyphosate-resistant soybean under Ontario environmental conditions.


1983 ◽  
Vol 63 (4) ◽  
pp. 879-888 ◽  
Author(s):  
W. G. LEGGE ◽  
D. B. FOWLER ◽  
L. V. GUSTA

The cold hardiness of tillers separated from the plant immediately before freezing (CTM) or left intact on the crown (ICM) was determined by artificial freeze tests on two sampling dates for four winter wheat (Triticum aestivum L.) cultivars acclimated in the field. Plants with 9 and 13 tillers excluding coleoptile tillers were selected in mid-October and at the end of October, respectively. No differences in lethal dose temperature (LT50) were detected among CTM or ICM tillers sampled in mid-October. The three youngest CTM tillers sampled at the end of October were less cold hardy than older tillers. However, younger CTM tillers did not survive the unfrozen control treatment as well as older tillers. ICM tillers sampled at the end of October had the same LT50 except for one of the older tillers. No correlation was found between either the moisture content or dry weight and the LT50 of tillers. Winter survival of tillers was evaluated for two cultivars in the spring. Tillers of intermediate age and two of the youngest tillers had the highest survival rates. Tiller regeneration from axillary buds rather than the apical meristem occurred following cold stress and was negatively correlated to tiller emergence date. It was concluded that differences in cold hardiness among tillers must be taken into consideration if tillers are utilized to estimate the LT50 of a plant.Key words: Cold hardiness, tillers, winter wheat, Triticum aestivum L., developmental stage, moisture content


Sign in / Sign up

Export Citation Format

Share Document