scholarly journals Climate change adaptation in arable land use, and impact on nitrogen load at catchment scale in northern agriculture

2013 ◽  
Vol 22 (3) ◽  
pp. 342-355 ◽  
Author(s):  
Katri Rankinen ◽  
Pirjo Peltonen-Sainio ◽  
Kirsti Granlund ◽  
Hannu Ojanen ◽  
Mikko Laapas ◽  
...  

Prolongation of the growing season due to a warming climate could represent new opportunities for northern agriculture. Climatic and biotic constraints may challenge future crop production. The objective of this study was to speculate how a range of arable land use patterns, resulting from various policy driven choices, could be introduced into a farming system, and how they would affect the risks associated with nutrient leaching. We found that while adaptation to climate change must include consideration of crop choices, there are conflicts associated with allocations and rotations for various market and policy situations. The expected increase in nutrient loading in the simulations caused by climate change was moderate. The increase can partly be compensated for by changes in farmland use, more in the shorter term than in the longer term to mid-century. In the future, adaptation at cropping system level is potentially an efficient way to manage nutrient load risks.

2019 ◽  
Author(s):  
Ajishnu Roy ◽  
Kousik Pramanick

AbstractAgriculture, along with industry and household sector are three major sectors of human consumption. Agriculture has proved to be a major contributor to exceeding planetary boundaries. Here, we have explored the impact of agriculture in the Earth system processes, through eight dimensions of planetary boundaries or safe operating spaces: climate change (10.73%), freshwater use (91.56%), arable land use (37.27%), nitrogen use (95.77%), phosphorus use (87.28%), ecological footprint (19.42%), atmospheric pollution (2.52% - 38.08%) and novel entities. In this work, we have also shown role of agriculture to the socio-economic development dimensions: gender equality, employment and economic growth. We have shown that the safe operating limits for agriculture are going to decline by almost 55% (climate change), 300% (freshwater use), 50-55% (arable land use), 180% (nitrogen use), 265% (phosphorus use) and 20% (ecological footprint) in 2050, if the most inefficient way of consumption is chosen and continued. To alleviate the role of agriculture in transgressing planetary boundaries, it is indispensable to comprehend how many roles of agriculture is playing and where which target should be set to framework the national agricultural policies in coherence with attaining sustainable development goals of UN by 2030.


Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 458
Author(s):  
Tara A. Ippolito ◽  
Jeffrey E. Herrick ◽  
Ekwe L. Dossa ◽  
Maman Garba ◽  
Mamadou Ouattara ◽  
...  

Smallholder agriculture is a major source of income and food for developing nations. With more frequent drought and increasing scarcity of arable land, more accurate land-use planning tools are needed to allocate land resources to support regional agricultural activity. To address this need, we created Land Capability Classification (LCC) system maps using data from two digital soil maps, which were compared with measurements from 1305 field sites in the Dosso region of Niger. Based on these, we developed 250 m gridded maps of LCC values across the region. Across the region, land is severely limited for agricultural use because of low available water-holding capacity (AWC) that limits dry season agricultural potential, especially without irrigation, and requires more frequent irrigation where supplemental water is available. If the AWC limitation is removed in the LCC algorithm (i.e., simulating the use of sufficient irrigation or a much higher and more evenly distributed rainfall), the dominant limitations become less severe and more spatially varied. Finally, we used additional soil fertility data from the field samples to illustrate the value of collecting contemporary data for dynamic soil properties that are critical for crop production, including soil organic carbon, phosphorus and nitrogen.


2021 ◽  
Vol 21 (3) ◽  
Author(s):  
Susanne Rolinski ◽  
Alexander V. Prishchepov ◽  
Georg Guggenberger ◽  
Norbert Bischoff ◽  
Irina Kurganova ◽  
...  

AbstractChanges in land use and climate are the main drivers of change in soil organic matter contents. We investigated the impact of the largest policy-induced land conversion to arable land, the Virgin Lands Campaign (VLC), from 1954 to 1963, of the massive cropland abandonment after 1990 and of climate change on soil organic carbon (SOC) stocks in steppes of Russia and Kazakhstan. We simulated carbon budgets from the pre-VLC period (1900) until 2100 using a dynamic vegetation model to assess the impacts of observed land-use change as well as future climate and land-use change scenarios. The simulations suggest for the entire VLC region (266 million hectares) that the historic cropland expansion resulted in emissions of 1.6⋅ 1015 g (= 1.6 Pg) carbon between 1950 and 1965 compared to 0.6 Pg in a scenario without the expansion. From 1990 to 2100, climate change alone is projected to cause emissions of about 1.8 (± 1.1) Pg carbon. Hypothetical recultivation of the cropland that has been abandoned after the fall of the Soviet Union until 2050 may cause emissions of 3.5 (± 0.9) Pg carbon until 2100, whereas the abandonment of all cropland until 2050 would lead to sequestration of 1.8 (± 1.2) Pg carbon. For the climate scenarios based on SRES (Special Report on Emission Scenarios) emission pathways, SOC declined only moderately for constant land use but substantially with further cropland expansion. The variation of SOC in response to the climate scenarios was smaller than that in response to the land-use scenarios. This suggests that the effects of land-use change on SOC dynamics may become as relevant as those of future climate change in the Eurasian steppes.


Land ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 41
Author(s):  
Yi Lou ◽  
Guanyi Yin ◽  
Yue Xin ◽  
Shuai Xie ◽  
Guanghao Li ◽  
...  

In the rapid process of urbanization in China, arable land resources are faced with dual challenges in terms of quantity and quality. Starting with the change in the coupling coordination relationship between the input and output on arable land, this study applies an evaluation model of the degree of coupling coordination between the input and output (D_CCIO) on arable land and deeply analyzes the recessive transition mechanism and internal differences in arable land use modes in 31 provinces on mainland China. The results show that the total amount and the amount per unit area of the input and output on arable land in China have presented different spatio-temporal trends, along with the mismatched movement of the spatial barycenter. Although the D_CCIO on arable land increases slowly as a whole, 31 provinces show different recessive transition mechanisms of arable land use, which is hidden in the internal changes in the input–output structure. The results of this study highlight the different recessive transition patterns of arable land use in different provinces of China, which points to the outlook for higher technical input, optimized planting structure, and the coordination of human-land relationships.


2020 ◽  
Vol 12 (23) ◽  
pp. 10050 ◽  
Author(s):  
Junfang Liu ◽  
Baolin Xue ◽  
Yuhui Yan

Land use and climate change are the two major driving factors of watershed runoff change, and it is of great significance to study the influence of watershed hydrological processes on water resource planning and management. This study takes the Changyang River basin as the study area, builds a SWAT model and explores the applicability of the SWAT model in the basin. Moreover, we combine data on land use and climate change in different periods to construct a variety of scenario models to quantitatively analyze the impacts of different scenarios on runoff. The results show that the R2 and Ensof the model are 0.71 and 0.68 in the calibration period, respectively, and those in the verification period are 0.68 and 0.65, respectively, indicating that the SWAT model has good applicability in simulating the runoff of the Changyang River basin. Under the comprehensive scenario of land use and climate change on runoff, we found that land use and climate change have a certain contribution to the change in runoff. Therefore, the runoff of the basin increased by 0.22 m3/s, in which land-use change caused the runoff in the basin to increase by 0.07 m3/s attributed to the decreased area of arable land and the increased area of urban land in the basin. Moreover, climate change has caused the runoff in the basin to increase by 0.13 m3/s, mainly influenced by the increased precipitation. The results show that climate change has a more significant effect on runoff in the basin.


GCB Bioenergy ◽  
2018 ◽  
Vol 11 (3) ◽  
pp. 466-482 ◽  
Author(s):  
Nicola Di Virgilio ◽  
Osvaldo Facini ◽  
Andrea Nocentini ◽  
Marianna Nardino ◽  
Federica Rossi ◽  
...  

2020 ◽  
Vol 43 (8) ◽  
pp. 2015-2033 ◽  
Author(s):  
David R. Plew ◽  
John R. Zeldis ◽  
Bruce D. Dudley ◽  
Amy L. Whitehead ◽  
Leigh M. Stevens ◽  
...  

Abstract We developed a method to predict the susceptibility of New Zealand estuaries to eutrophication. This method predicts macroalgae and phytoplankton responses to potential nutrient concentrations and flushing times, obtained nationally from simple dilution models, a GIS land-use model and physical estuary properties. Macroalgal response was based on an empirically derived relationship between potential nitrogen concentrations and an established macroalgal index (EQR) and phytoplankton response using an analytical growth model. Intertidal area was used to determine which primary producer was likely to lead to eutrophic conditions within estuaries. We calculated the eutrophication susceptibility of 399 New Zealand estuaries and assigned them to susceptibility bands A (lowest expected impact) to D (highest expected impact). Twenty-seven percent of New Zealand estuaries have high or very high eutrophication susceptibilities (band C or D), mostly (63% of band C and D) due to macroalgae. The physical properties of estuaries strongly influence susceptibility to macroalgae or phytoplankton blooms, and estuaries with similar physical properties cluster spatially around New Zealand’s coasts. As a result, regional patterns in susceptibility are apparent due to a combination of estuary types and land use patterns. The few areas in New Zealand with consistently low estuary eutrophication susceptibilities are either undeveloped or have estuaries with short flushing times, low intertidal area and/or minimal tidal influx. Estuaries with conditions favourable for macroalgae are most at risk. Our approach provides estuary-integrated susceptibility scores likely to be of use as a regional or national screening tool to prioritise more in-depth estuary assessments, to evaluate likely responses to altered nutrient loading regimes and assist in developing management strategies for estuaries.


Sign in / Sign up

Export Citation Format

Share Document