scholarly journals Predicting Nigerian Stock Returns using Technical Analysis and Machine Learning

Author(s):  
D. O. Oyewola ◽  
Emmanuel Gbenga Gbenga Dada ◽  
Omole Ezekiel Olaoluwa ◽  
K.A. Al-Mustapha

Models of stock price prediction have customarily utilized technical indicators alone to produce trading signals. In this paper, we construct trading techniques by applying machine-learning methods to technical analysis indicators and stock market returns data. The resulting prediction models can be utilized as an artificial trader used to trade on any given stock trade. Here the issue of stock trading decision prediction is enunciated as a classification problem with two class values representing the buy and sell signals. The stacking technique utilized in this paper is to assist trader with applying the proposed algorithms in their trading using random forest which was staked with different algorithms which incorporates Logistic Regression (LR), Random Forest (RF), Support Vector Machine (SVM) and Neural Network (NN). The experimental results indicated that Top Layer of Random Forest (TRF) produced the best performance among all the algorithms compared. This is an indication that it is a promising strategy for forecasting Nigerian stock returns.

2019 ◽  
Vol 8 (2) ◽  
pp. 3186-3193

The trend of stock price prediction has always been in the focal point of analytical activity in financial domain for both the researchers and investors. Prediction with accuracy is very essential for improved investment decisions that imbibe minimum risk factors. Due to this, majority of investors depend upon that intelligent trading system which generates better forecasting results. As forecasting stock market price with high accuracy is quite a challenging task for the analysts, machine learning has been adopted as one of the popular techniques to predict future trends. Even if there are many recognized analytical time series analysis that are categorized either under soft computing or under conventional statistical techniques like fuzzy logic, artificial neural networks and genetic algorithms, researchers have been looking for more appropriate techniques which can exhibit improved results. In this paper, we developed different hybrid machine learning based prediction models and compared their efficiency. Dimension reduction techniques such as orthogonal forward selection (OFS) and kernel principal component analysis (KPCA) are used separately with support vector regression (SVR) and teaching learning based optimization (TLBO) to predict the stock price of Tata Steel. The performance of both the proposed approach is evaluated with 4143days daily transactional data of Tata steels stocks price, which was collected from Bombay Stock Exchange (BSE). We compared the results of both OFS-SVR-TLBO and KPCA-SVR-TLBO hybrid models and concludes that by incorporating KPCA is more practicable and performs better results than OFS


2020 ◽  
Vol 10 (24) ◽  
pp. 9151
Author(s):  
Yun-Chia Liang ◽  
Yona Maimury ◽  
Angela Hsiang-Ling Chen ◽  
Josue Rodolfo Cuevas Juarez

Air, an essential natural resource, has been compromised in terms of quality by economic activities. Considerable research has been devoted to predicting instances of poor air quality, but most studies are limited by insufficient longitudinal data, making it difficult to account for seasonal and other factors. Several prediction models have been developed using an 11-year dataset collected by Taiwan’s Environmental Protection Administration (EPA). Machine learning methods, including adaptive boosting (AdaBoost), artificial neural network (ANN), random forest, stacking ensemble, and support vector machine (SVM), produce promising results for air quality index (AQI) level predictions. A series of experiments, using datasets for three different regions to obtain the best prediction performance from the stacking ensemble, AdaBoost, and random forest, found the stacking ensemble delivers consistently superior performance for R2 and RMSE, while AdaBoost provides best results for MAE.


2020 ◽  
Vol 18 (1) ◽  
Author(s):  
Kerry E. Poppenberg ◽  
Vincent M. Tutino ◽  
Lu Li ◽  
Muhammad Waqas ◽  
Armond June ◽  
...  

Abstract Background Intracranial aneurysms (IAs) are dangerous because of their potential to rupture. We previously found significant RNA expression differences in circulating neutrophils between patients with and without unruptured IAs and trained machine learning models to predict presence of IA using 40 neutrophil transcriptomes. Here, we aim to develop a predictive model for unruptured IA using neutrophil transcriptomes from a larger population and more robust machine learning methods. Methods Neutrophil RNA extracted from the blood of 134 patients (55 with IA, 79 IA-free controls) was subjected to next-generation RNA sequencing. In a randomly-selected training cohort (n = 94), the Least Absolute Shrinkage and Selection Operator (LASSO) selected transcripts, from which we constructed prediction models via 4 well-established supervised machine-learning algorithms (K-Nearest Neighbors, Random Forest, and Support Vector Machines with Gaussian and cubic kernels). We tested the models in the remaining samples (n = 40) and assessed model performance by receiver-operating-characteristic (ROC) curves. Real-time quantitative polymerase chain reaction (RT-qPCR) of 9 IA-associated genes was used to verify gene expression in a subset of 49 neutrophil RNA samples. We also examined the potential influence of demographics and comorbidities on model prediction. Results Feature selection using LASSO in the training cohort identified 37 IA-associated transcripts. Models trained using these transcripts had a maximum accuracy of 90% in the testing cohort. The testing performance across all methods had an average area under ROC curve (AUC) = 0.97, an improvement over our previous models. The Random Forest model performed best across both training and testing cohorts. RT-qPCR confirmed expression differences in 7 of 9 genes tested. Gene ontology and IPA network analyses performed on the 37 model genes reflected dysregulated inflammation, cell signaling, and apoptosis processes. In our data, demographics and comorbidities did not affect model performance. Conclusions We improved upon our previous IA prediction models based on circulating neutrophil transcriptomes by increasing sample size and by implementing LASSO and more robust machine learning methods. Future studies are needed to validate these models in larger cohorts and further investigate effect of covariates.


2019 ◽  
Author(s):  
Sheng-Yong Niu ◽  
Binqiang Liu ◽  
Qin Ma ◽  
Wen-Chi Chou

AbstractA transcription unit (TU) is composed of one or multiple adjacent genes on the same strand that are co-transcribed in mostly prokaryotes. Accurate identification of TUs is a crucial first step to delineate the transcriptional regulatory networks and elucidate the dynamic regulatory mechanisms encoded in various prokaryotic genomes. Many genomic features, e.g., gene intergenic distance, and transcriptomic features including continuous and stable RNA-seq reads count signals, have been collected from a large amount of experimental data and integrated into classification techniques to computationally predict genome-wide TUs. Although some tools and web servers are able to predict TUs based on bacterial RNA-seq data and genome sequences, there is a need to have an improved machine-learning prediction approach and a better comprehensive pipeline handling QC, TU prediction, and TU visualization. To enable users to efficiently perform TU identification on their local computers or high-performance clusters and provide a more accurate prediction, we develop an R package, named rSeqTU. rSeqTU uses a random forest algorithm to select essential features describing TUs and then uses support vector machine (SVM) to build TU prediction models. rSeqTU (available at https://s18692001.github.io/rSeqTU/) has six computational functionalities including read quality control, read mapping, training set generation, random-forest-based feature selection, TU prediction, and TU visualization.


Life ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 866
Author(s):  
Sony Hartono Wijaya ◽  
Farit Mochamad Afendi ◽  
Irmanida Batubara ◽  
Ming Huang ◽  
Naoaki Ono ◽  
...  

Background: We performed in silico prediction of the interactions between compounds of Jamu herbs and human proteins by utilizing data-intensive science and machine learning methods. Verifying the proteins that are targeted by compounds of natural herbs will be helpful to select natural herb-based drug candidates. Methods: Initially, data related to compounds, target proteins, and interactions between them were collected from open access databases. Compounds are represented by molecular fingerprints, whereas amino acid sequences are represented by numerical protein descriptors. Then, prediction models that predict the interactions between compounds and target proteins were constructed using support vector machine and random forest. Results: A random forest model constructed based on MACCS fingerprint and amino acid composition obtained the highest accuracy. We used the best model to predict target proteins for 94 important Jamu compounds and assessed the results by supporting evidence from published literature and other sources. There are 27 compounds that can be validated by professional doctors, and those compounds belong to seven efficacy groups. Conclusion: By comparing the efficacy of predicted compounds and the relations of the targeted proteins with diseases, we found that some compounds might be considered as drug candidates.


2019 ◽  
Vol 8 (2) ◽  
pp. 2847-2850

Stock market analysis is a common economic activity that has been an attractive topic to research and used in different forms of day-to-day life in order to predict the stock prices. Techniques like major analysis, Statistical investigation, Time arrangement analysis and so on are reliably worthy forecast device. In this paper, Data mining, Machine learning (ML) and Sentiment analysis are techniques used for analyzing public emotions in order predict the future stock prices. The goal of a project is to review totally different techniques to predict stock worth movement victimization the sentiment analysis from social media, data processing. Sentiment classifiers are designed for social media text like product reviews, blog posts, and email corpus messages. In the company’s communication network, information mining calculation is utilized as to mine email correspondence records and verifiable stock costs. Implementing various Machine learning and Classification models such as Deep Neural network, Random forests, Support Vector Machine, the company can successfully implemented a company-specific model capable of predicting stock price movement with efficient accuracy


Sensors ◽  
2021 ◽  
Vol 21 (16) ◽  
pp. 5595
Author(s):  
Tim Englert ◽  
Florian Gruber ◽  
Jan Stiedl ◽  
Simon Green ◽  
Timo Jacob ◽  
...  

To correctly assess the cleanliness of technical surfaces in a production process, corresponding online monitoring systems must provide sufficient data. A promising method for fast, large-area, and non-contact monitoring is hyperspectral imaging (HSI), which was used in this paper for the detection and quantification of organic surface contaminations. Depending on the cleaning parameter constellation, different levels of organic residues remained on the surface. Afterwards, the cleanliness was determined by the carbon content in the atom percent on the sample surfaces, characterized by XPS and AES. The HSI data and the XPS measurements were correlated, using machine learning methods, to generate a predictive model for the carbon content of the surface. The regression algorithms elastic net, random forest regression, and support vector machine regression were used. Overall, the developed method was able to quantify organic contaminations on technical surfaces. The best regression model found was a random forest model, which achieved an R2 of 0.7 and an RMSE of 7.65 At.-% C. Due to the easy-to-use measurement and the fast evaluation by machine learning, the method seems suitable for an online monitoring system. However, the results also show that further experiments are necessary to improve the quality of the prediction models.


Author(s):  
Manavi Mishra ◽  
Manjushree Patil ◽  
Geetanjali Raut ◽  
Tushar Chaudhari

Stock returns are very fluctuating in nature. They rely upon various factors like previous stock prices, current market trends, financial news, etc. To feature their annual income, people have now started watching stock investments as a remunerative option. There are many tools available to investors using technical analysis to form decisions. With expert guidance and intelligent planning, we will almost double our annual income through stock returns. These days, social media has become a mirror. It reflects people’s thoughts and opinions on any particular event or news. Sentiments of the general public associated with an organization can have an upshot on its stock prices. This paper surveys various machine learning techniques and algorithms employed to boost the accuracy of stock price prediction.


Author(s):  
Valentina Bellini ◽  
Marina Valente ◽  
Giorgia Bertorelli ◽  
Barbara Pifferi ◽  
Michelangelo Craca ◽  
...  

Abstract Background Risk stratification plays a central role in anesthetic evaluation. The use of Big Data and machine learning (ML) offers considerable advantages for collection and evaluation of large amounts of complex health-care data. We conducted a systematic review to understand the role of ML in the development of predictive post-surgical outcome models and risk stratification. Methods Following the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines, we selected the period of the research for studies from 1 January 2015 up to 30 March 2021. A systematic search in Scopus, CINAHL, the Cochrane Library, PubMed, and MeSH databases was performed; the strings of research included different combinations of keywords: “risk prediction,” “surgery,” “machine learning,” “intensive care unit (ICU),” and “anesthesia” “perioperative.” We identified 36 eligible studies. This study evaluates the quality of reporting of prediction models using the Transparent Reporting of a Multivariable Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) checklist. Results The most considered outcomes were mortality risk, systemic complications (pulmonary, cardiovascular, acute kidney injury (AKI), etc.), ICU admission, anesthesiologic risk and prolonged length of hospital stay. Not all the study completely followed the TRIPOD checklist, but the quality was overall acceptable with 75% of studies (Rev #2, comm #minor issue) showing an adherence rate to TRIPOD more than 60%. The most frequently used algorithms were gradient boosting (n = 13), random forest (n = 10), logistic regression (LR; n = 7), artificial neural networks (ANNs; n = 6), and support vector machines (SVM; n = 6). Models with best performance were random forest and gradient boosting, with AUC > 0.90. Conclusions The application of ML in medicine appears to have a great potential. From our analysis, depending on the input features considered and on the specific prediction task, ML algorithms seem effective in outcomes prediction more accurately than validated prognostic scores and traditional statistics. Thus, our review encourages the healthcare domain and artificial intelligence (AI) developers to adopt an interdisciplinary and systemic approach to evaluate the overall impact of AI on perioperative risk assessment and on further health care settings as well.


2013 ◽  
Vol 11 (9) ◽  
pp. 3025-3033
Author(s):  
Sunil B Wankhade ◽  
Divyesh Surana ◽  
Neel J Mansatta ◽  
Karan Shah

Stock price forecasting phenomenon has been majorly made on the basis of quantitative information. Over the time, with the advent of technology, stock forecasting used technical analysis to get more accurate predictions. Until recently, studies have demonstrated that sentiment information hidden in corporate reports can be effectively incorporated to predict short-run stock price returns. Soft computing methods, like neural networks, fuzzy models and support vector regression, have shown great results in the forecasting of stock price due to their ability to model complex non-linear systems.In this paper we propose a hybrid method for stock price predication, which is combinational feature from technical analysis and sentiment analysis (SA). The features of sentiment analysis are based on a Point wise Mutual Information (PMI) and we apply  neural network and ε-support vector regression models to predict the yearly change in the stock price.


Sign in / Sign up

Export Citation Format

Share Document