scholarly journals Electrochemical Evaluation of Chrysin Flavonoid as Corrosion Inhibitor for Mild Steel in Sulphuric Acid Solution

2020 ◽  
Vol 5 (11) ◽  
pp. 1389-1393
Author(s):  
M. Y. Díaz ◽  
M. G. Valladares ◽  
E. C. Menchaca ◽  
J. Uruchurtu

Recently research is focused on natural organic compounds as metallic corrosion inhibitors demonstrating good corrosion protection and efficiencies. Steel corrosion behavior in acid media was evaluated in the presence of a pure natural flavonoid metabolite named Chrysin present in different plants. The evaluation of corrosion protection was studied using polarization curves, electrochemical impedance spectroscopy (EIS) and electrochemical current density under potentiostatic conditions. Polarization curves present active dissolution and at high overpotentials two passivation regions were found. Slight corrosion protection was obtained from EIS measurements and potentiostatic curves at three different anodic potentials: -370, +216 and +600 mV, revealed a more stable passive film in the presence of Chrysin at both passive regions. High corrosion protection was obtained on the film formed at +600 mV during the first 4 hours of immersion.

2017 ◽  
Vol 24 (6) ◽  
pp. 825-832 ◽  
Author(s):  
Murat Ates

AbstractMethylcarbazole (MCz) and its nanocomposites with Montmorillonite nanoclay and Zn nanoparticles were chemically synthesized on a stainless steel (SS304) electrode. The modified electrode was characterized by optical microscope, scanning electron microscopy-energy dispersive X-ray analysis (SEM-EDX), Fourier-transform infrared spectroscopy-attenuated transmission reflectance (FTIR-ATR), four-point probe, and electrochemical impedance spectroscopy (EIS) analysis. The synthesized stainless steel/poly(methylcarbazole) (SS/P(MCz)), stainless steel/poly(methylcarbazole)/nanoclay (SS/P(MCz)/nanoclay), and stainless steel/poly(methylcarbazole)/nanoZn (SS/P(MCz)/nanoZn) were studied by potentiodynamic polarization curves. The protective behavior of these coatings in 3.5% NaCl as the corrosion medium was investigated using Tafel polarization curves, as well as electrochemical impedance spectroscopy. The corrosion protection parameters were also supported by EIS and an equivalent circuit model of Rs(Qc(Rc(QpRct))). The corrosion current of the SS/P(MCz)/nanoclay samples was found to be much lower (icorr=0.010 μA×cm-2) than that of SS/P(MCz)/nanoZn (icorr=0.031 μA×cm-2) and pure SS/P(MCz) samples. These results reveal that chemically synthesized SS/P(MCz), SS/P(MCz)/nanoclay, and SS/P(MCz)/nanoZn nanocomposite film coating have high corrosion protection efficiency (PE=99.56%, 99.89%, and 99.67%, respectively). Thus, based on the study findings, we posit that nanoclay and Zn nanoparticles possess favorable barrier properties, which can be employed in order to achieve improvements in chemical corrosion protection through P(MCz) coating.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chikkur B. Pradeep Kumar ◽  
Kikkeri N. Mohana

Achyranthes aspera (AA) extracts were studied as corrosion inhibitor for mild steel (MS) in industrial water medium using mass loss and electrochemical techniques. The results of the study revealed that AA extracts inhibit MS corrosion through adsorption process following Langmuir adsorption isotherm model. The protection efficiency increased with increase in inhibitor concentration and decreased with temperature. The electrochemical impedance spectroscopy (EIS) measurements showed that the charge transfer resistance increases with increase in the concentration of AA extracts. The polarization curves obtained indicate that AA extracts act as mixed type of inhibitor. Scanning electron microscopy (SEM) was used to analyze the surface adsorbed film.


2014 ◽  
Vol 61 (3) ◽  
pp. 146-152 ◽  
Author(s):  
Ali Ehsani ◽  
Mohammad Ghasem Mahjani ◽  
Maryam Nasseri ◽  
Majid Jafarian

Purpose – The purpose of this paper was to investigate the anti-corrosion behavior of polypyrrole (PPy) films in different states and presence of alumina nanoparticles synthesized by galvanostatic electropolymerization on stainless steel (SS) electrodes in an artificial seawater solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). Design/methodology/approach – The electrochemical measurements were used to examine the effects of PPy and its nanocomposite on the corrosion behavior of SS type 316L in artificial seawater. A standard electrochemical cell with three electrodes was used for the measurements. The electrochemical response of the coated electrodes in the doped and the undoped state was compared with that of a bare electrode. Corrosion rate information was obtained by the Tafel extrapolation method, where the intersection point of a cathodic and an anodic polarization curve provides both the corrosion potential and the corrosion current. EIS measurements confirmed the potentiodynamic and open circuit potential (OCP) results. The microstructure of the obtained films was investigated by scanning electron microscopy. Findings – The results showed that the coated polymer films shifted the electrode potential toward more positive potentials, but this shift did not lead to passivation. However, a notable synergy was observed between PPy undoped film, oxygen reduction and iron dissolution. The potential of the SS remained in the active dissolution region, and it was not possible to produce a passive oxide layer in this region. PPy separates the metal dissolution process from the oxygen reduction process. This would prevent the local pH increase at the metal surface and subsequent delamination. The polarization curves, EOCP and impedance measurements showed that PPy undoped/Al2O3 layers show promise as good candidates for the corrosion protection of reactive metals. Originality/value – This paper presents that electrodes coated with undoped PPy synthesized in the presence of dodecyl sulfate anions and Al2O3 nanoparticles offered a noticeable enhancement of protection against corrosion processes.


2020 ◽  
Vol 38 (2) ◽  
pp. 137-149
Author(s):  
Mohamed Ouknin ◽  
Abderrahmane Romane ◽  
Jean-Pierre Ponthiaux ◽  
Jean Costa ◽  
Lhou Majidi

AbstractThe inhibition effect of Thymus zygis subsp. gracilis (TZ) on mild steel corrosion in 1 m hydrochloric acid has been investigated by weight loss measurements, surface analysis [scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX), three-dimensional (3D) profilometry, and Fourier transform infrared analysis], potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Gravimetric results indicate that TZ exhibits good inhibition efficiency of 80.40% attained at 3 g/l. Polarization measurements show that the studied inhibitor is a mixed type. EIS measurements revealed that the charge transfer resistance increases with increasing concentration of TZ, which suggests a Langmuir adsorption isotherm model. Based on SEM-EDX and 3D profilometry, it appears that the surface is remarkably improved in the presence of TZ oil compared to that exposed to the acid medium without TZ oil. From the obtained results, it can be concluded that this oil is a new natural substance that can be used against material corrosion in aggressive medium.


2019 ◽  
Vol 66 (5) ◽  
pp. 544-555 ◽  
Author(s):  
Ilham Elazhary ◽  
My Rachid Laamari ◽  
Aziz Boutouil ◽  
Lahoucine Bahsis ◽  
Mohammadine El Haddad ◽  
...  

Purpose This paper aims to study the corrosion inhibition of Methyl 2-(benzamido)-2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetate (MBPTA) and Methyl 2-(benzamido)-2-(4-p-tolyl-1H-1,2,3-triazol-1-yl) acetate (MBTTA) in 1 M H2SO4 solution at 25 °C. Design/methodology/approach The authors have used weight loss measurements, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization, FT-IR, quantum chemical calculations and scanning electron microscopy (SEM) techniques. Findings The polarization measurements indicate that both compounds are mixed type inhibitors, and that MBTTA is more effective than MBPTA. The effect of temperature on the corrosion behavior using optimal concentration of MBTTA and MBPTA was studied in the temperature range 298-328 K. SEM was used to examine the morphology of the metal surface. Thermodynamic parameters were calculated and discussed. Monte Carlo simulations were applied to lookup for the most stalls configuration and adsorption energy for the interaction of inhibitors on Fe (1 1 1) interface. The difference in inhibition efficiencies between the two organic inhibitors can be clearly explained in terms of frontier molecular orbital theory. Originality/value The authors report on the comparative inhibiting effect of two new 1,4-disubstituted 1,2,3-triazoles, namely Methyl 2-(benzamido)-2-(4-phenyl-1H-1,2,3-triazol-1-yl) acetate (MBPTA) and Methyl 2-(benzamido)-2-(4-p-tolyl-1H-1, 2, 3-triazol-1-yl) acetate (MBTTA) on mild steel corrosion in 1 M H2SO4 solution.


Author(s):  
B. Okeoma Kelechukwu ◽  
O. Owate Israel ◽  
E. Oguzie Emeka ◽  
M. Mejeha Ihebrodike ◽  
Nnanna Lebe ◽  
...  

Effects of heat treatment and quenching regimen on the electrochemical corrosion behaviour of aluminium alloy AA8011 in 0.1M H2SO4 was studied by open circuit potential, potentiodynamic polarization and electrochemical impedance spectroscopy measurements. Three different specimens (untreated/control, air -quenched oven- quenched) were investigated. Polarization results show that all the specimens underwent active dissolution, with no distinctive transition to passivation, heat treatment was observed to shift the corrosion potential towards low anodic values and decreased the rates of anodic partial reactions of the corrosion process. Electrochemical investigations reveal that heat treatment techniques have positive impacts on the alloy as indicated in increase in charge transfer resistance, polarization resistance and decrease in double layer capacitance. These positive effects are attributed to decrease in mean defect size and increase in lattice distortion of the crystallites in the heat treated specimens of the alloy. Studies of X-ray diffraction (XRD) spectra, scanning electron microscopy (SEM) morphologies of control, air and oven quenched samples of AA8011 aluminium alloy indicate decrease in mean defect size of 18.97% and 40.44%; increase in the lattice distortion of 11.07% and 20.04% for air and oven quenched specimens respectively.


2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Gulmira Rakhymbay ◽  
Raigul Jumanova ◽  
Khaisa Avchukir ◽  
Yeldana Bakhytzhan ◽  
Akmaral Argimbayeva ◽  
...  

The present study reports a synthetic condensation process of a vegetable oil (waste) reacted with triethanolamine, maleic anhydride and acrylonitrile in (1 : 1.2 : 2 : 1) mole ratios to obtain N-(β-ethoxypropionitrile)-N,N-bis(2-hydroxyethylethoxy) fatty amide as a major inhibitory product. Corrosion property of steel in a 3% NaCl solution in the presence of a potential inhibitor was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. These methods gave consistent results, from which it is noticeable that inhibition efficiency increases with the increasing concentration of the inhibitor. Gravimetric studies show an increase in the sample mass at an inhibitor concentration of 10 mM, indicative of adsorbed film formation on the surface. The polarization curve results showed that the compound demonstrates itself as an anodic-type inhibitor. A rise in polarization resistance values in the EIS measurements also confirmed that the compound acts as an effective inhibitor of steel corrosion. Furthermore, the R(CR)(QR) equivalent circuit was used to interpret the results obtained in the investigation of the corrosion behaviour of steel in solution with an inhibitor. The standard adsorption free energies calculated from the Langmuir isotherm indicate that adsorption takes place by physical and chemical mechanisms. The presence of adsorbed protective film was confirmed by FT-IR spectrum and SEM micrographs.


2014 ◽  
Vol 10 (1) ◽  
pp. 2126-2145
Author(s):  
Sounthari. P ◽  
Kiruthika. A ◽  
Saranya. J ◽  
Parameswari. K ◽  
Chitra. S

The corrosion inhibition property of 1,3,4-Oxadiazole dimers have been investigated for mild steel in acidic environment using gravimetric method, Tafel polarization, electrochemical impedance spectroscopy (EIS), scanning electron microscope (SEM), atomic absorption spectroscopy (AAS) and adsorption isotherm. The results revealed that 1,3,4-Oxadiazole dimers had excellent corrosion inhibition property for mild steel in 1M H2SO4 acid media and its inhibitive efficiency was more than 99% even with a low concentration of 1000ppm.The adsorption of the organic compounds on the mild steel surface obeyed Langmuir adsorption  isotherm. IR spectra and SEM proved the adsorption of organic inhibitors and the formation of corrosion products on the mild steel surface. 


2015 ◽  
Vol 62 (2) ◽  
pp. 88-94 ◽  
Author(s):  
Ahmad Khajouei ◽  
Effat Jamalizadeh ◽  
Seyed Mohammad Ali Hosseini

Purpose – The purpose of this paper was to study the corrosion resistance of AA2024 alloy using surfactant-modified halloysite nanocapsules capable of holding benzotriazole (BTA) as the corrosion inhibitor and discharging it into the solution. Design/methodology/approach – The effect of surfactant shells was studied by surfactant-modified halloysite nanotubes fabricated through assembly of two types of cationic surfactants. The zeta potential and size distribution measurements were performed using a Zetasizer Nano. The concentration of BTA during release into the solution was detected by using a UV–vis spectrophotometer. The anti-corrosion activity of nanocapsules as free agents with respect to the AA2024 alloy was investigated using the potentiodynamic scan (PDS) method. An epoxy resin doped with nanocapsules was used as an anti-corrosion coating deposited on the AA2024 alloy. The corrosion protection performance of coatings was studied by using the electrochemical impedance spectroscopy (EIS) method. Findings – The results indicate that the release of the inhibitor from nanocapsules depends on the surfactant shell components. The PDS results confirmed the feasibility of developing “smart” corrosion protection by inhibitor-loaded nanocapsules. The results of EIS measurements showed that the coating with the nanocapsules exhibited enhanced corrosion protection in comparison with the undoped coating. Originality/value – The findings of this paper indicate that surfactant-modified halloysite nanocapsules can be added to epoxy resin coatings to improve their corrosion protective properties for the AA2024 alloy.


Sign in / Sign up

Export Citation Format

Share Document