scholarly journals Synthesis and evaluation of corrosion inhibitory and adsorptive properties of N-(β-ethoxypropionitrile-N,N-bis(2-hydroxyethylethoxy) fatty amide

2021 ◽  
Vol 8 (9) ◽  
Author(s):  
Gulmira Rakhymbay ◽  
Raigul Jumanova ◽  
Khaisa Avchukir ◽  
Yeldana Bakhytzhan ◽  
Akmaral Argimbayeva ◽  
...  

The present study reports a synthetic condensation process of a vegetable oil (waste) reacted with triethanolamine, maleic anhydride and acrylonitrile in (1 : 1.2 : 2 : 1) mole ratios to obtain N-(β-ethoxypropionitrile)-N,N-bis(2-hydroxyethylethoxy) fatty amide as a major inhibitory product. Corrosion property of steel in a 3% NaCl solution in the presence of a potential inhibitor was investigated using weight loss, potentiodynamic polarization and electrochemical impedance spectroscopy (EIS) methods. These methods gave consistent results, from which it is noticeable that inhibition efficiency increases with the increasing concentration of the inhibitor. Gravimetric studies show an increase in the sample mass at an inhibitor concentration of 10 mM, indicative of adsorbed film formation on the surface. The polarization curve results showed that the compound demonstrates itself as an anodic-type inhibitor. A rise in polarization resistance values in the EIS measurements also confirmed that the compound acts as an effective inhibitor of steel corrosion. Furthermore, the R(CR)(QR) equivalent circuit was used to interpret the results obtained in the investigation of the corrosion behaviour of steel in solution with an inhibitor. The standard adsorption free energies calculated from the Langmuir isotherm indicate that adsorption takes place by physical and chemical mechanisms. The presence of adsorbed protective film was confirmed by FT-IR spectrum and SEM micrographs.

Coatings ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 106
Author(s):  
Akbar Ali Samsath Begum ◽  
Raja Mohamed Abdul Vahith ◽  
Vijay Kotra ◽  
Mohammed Rafi Shaik ◽  
Abdelatty Abdelgawad ◽  
...  

In the present study, the corrosion inhibition effect of Spilanthes acmella aqueous leaves extract (SA-LE) on mild steel was investigated in 1.0 M HCl solution at different temperature using weight loss, Tafel polarization, linear polarization resistance (LPR), and electrochemical impedance (EIS) measurements. Adsorption of inhibitor on the surface of the mild steel obeyed both Langmuir and Temkin adsorption isotherms. The thermodynamic and kinetic parameters were also calculated to determine the mechanism of corrosion inhibition. The inhibition efficiency was found to increase with an increase in the inhibitor concentration i.e., Spilanthes acmella aqueous leaves extract, however, the inhibition efficiency decreased with an increase in the temperature. The phytochemical constituents with functional groups including electronegative hetero atoms such as N, O, and S in the extract adsorbed on the metal surface are found responsible for the effective performance of the inhibitor, which was confirmed by Fourier-transform infrared spectroscopy (FT-IR) and ultraviolet–visible spectroscopic (UV-Vis) studies. Protective film formation against corrosion was confirmed by scanning electron microscopy (SEM), atomic force microscopy (AFM), and contact angle studies. The result shows that the leaves extract acts as corrosion inhibitor and is able to promote surface protection by blocking active sites on the metal.


2011 ◽  
Vol 399-401 ◽  
pp. 2055-2060
Author(s):  
Ji Bo Jiang ◽  
Wei Dong Liu ◽  
Lei Zhang ◽  
Qing Dong Zhong ◽  
Yi Wang ◽  
...  

Ni–B4C composite coatings on carbon steel substrates with various contents of B4C nano-particulates were prepared by electrodeposition in Ni plating bath containing B4C nano-particulates. Microhardness, Scanning Electron Microscopy (SEM), Tafel polarization and Electrochemical Impedance Spectroscopy (EIS) measurements were used to compare pure nickel coatings and Ni–B4C composite coatings. Pure Ni coating microhardness is lower than that of Ni–B4C coatings and the microhardness of the composite coatings increases with the increase of the content of B4C nano-particulates. The effects of various contents of B4C nano-particulates on the corrosion resistance were investigated and it was found that the best anti–corrosion property of Ni–B4C composite coatings is at 6 g/L B4C in the bath formulation.


2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chikkur B. Pradeep Kumar ◽  
Kikkeri N. Mohana

Achyranthes aspera (AA) extracts were studied as corrosion inhibitor for mild steel (MS) in industrial water medium using mass loss and electrochemical techniques. The results of the study revealed that AA extracts inhibit MS corrosion through adsorption process following Langmuir adsorption isotherm model. The protection efficiency increased with increase in inhibitor concentration and decreased with temperature. The electrochemical impedance spectroscopy (EIS) measurements showed that the charge transfer resistance increases with increase in the concentration of AA extracts. The polarization curves obtained indicate that AA extracts act as mixed type of inhibitor. Scanning electron microscopy (SEM) was used to analyze the surface adsorbed film.


Metals ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 1992
Author(s):  
Luis Cáceres ◽  
Yohana Frez ◽  
Felipe Galleguillos ◽  
Alvaro Soliz ◽  
Benito Gómez-Silva ◽  
...  

The implementation of corrosion engineering control methods and techniques is crucial to extend the life of urban and industrial infrastructure assets and industrial equipment affected by natural corrosion. Then, the search of stable and environmentally friendly corrosion inhibitors is an important pending task. Here, we provide experimental evidence on the corrosion inhibitory activity of aqueous extracts of Skytanthus acutus Meyen leaf, a native plant from the Atacama Desert in northern Chile. Skytanthus extracts as a powder should be prepared at 55 °C to avoid thermal decomposition and loss of corrosion inhibitory activity. Corrosion of carbon steel AISI1020 immersed in 0.5 M NaCl was evaluated in the presence of different doses of Skytanthus extract by complementary and simultaneous linear polarization, electrochemical impedance spectroscopy, and weight-loss technique under high hydrodynamic conditions. Mixed Potential Theory was applied to confirm the electrochemical activity of the extract inhibitory capabilities. The Skytanthus extracts reached a 90% corrosion inhibitory efficiency when tested at 100 to 1200 ppm in a time span of 48 h, through an electrochemical interaction between the extract inhibitor component and the carbon steel surface. The corrosion inhibition activity observed in Skytanthus dry extracts involves a protective film formation by a mechanism that includes an iron dissolution at the expense of either oxygen reduction and/or hydrogen evolution, followed by a ferrous-ferric iron cycling, the formation of an iron complex and adsorption to the metal surface, and, finally, desorption or degradation of the protecting film. The water-soluble plant extract was subjected to HPLC-MS analyses that rendered 14 major signals, with quinic acid, protocatechuic acid, chlorogenic acid isomers, vanillic acid hexoside, and patuletin 3-methoxy-7-glucoside as the most abundant components. Then, we propose that a phenolic derivative is responsible for the corrosion inhibitory activity found in Skytanthus extracts.


2020 ◽  
Vol 38 (2) ◽  
pp. 137-149
Author(s):  
Mohamed Ouknin ◽  
Abderrahmane Romane ◽  
Jean-Pierre Ponthiaux ◽  
Jean Costa ◽  
Lhou Majidi

AbstractThe inhibition effect of Thymus zygis subsp. gracilis (TZ) on mild steel corrosion in 1 m hydrochloric acid has been investigated by weight loss measurements, surface analysis [scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX), three-dimensional (3D) profilometry, and Fourier transform infrared analysis], potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Gravimetric results indicate that TZ exhibits good inhibition efficiency of 80.40% attained at 3 g/l. Polarization measurements show that the studied inhibitor is a mixed type. EIS measurements revealed that the charge transfer resistance increases with increasing concentration of TZ, which suggests a Langmuir adsorption isotherm model. Based on SEM-EDX and 3D profilometry, it appears that the surface is remarkably improved in the presence of TZ oil compared to that exposed to the acid medium without TZ oil. From the obtained results, it can be concluded that this oil is a new natural substance that can be used against material corrosion in aggressive medium.


2020 ◽  
Vol 1012 ◽  
pp. 390-394
Author(s):  
C. Vieira ◽  
D. Borges ◽  
D.C.S. Oliszeski ◽  
L.F.G. Larsson ◽  
E.P. Banczek

Carbon steel is one of the most commonly used alloys in industrial applications due to its physicochemical properties and low cost. However, the use of this metal material may become limited due to its vulnerability to corrosion. Thus, it is necessary to use methods that inhibit corrosion. Organic compounds with heteroatoms possess the characteristic of inhibiting corrosion by forming a protective film. The corrosion protection of SAE 1020 carbon steel, promoted by the aqueous extract of Persea pyrifolia (PP) bark, was evaluated in this work at extract concentrations of 5% and 10% v/v, in order to replace an inhibitor of synthetic origin with an ecologically benign inhibitor. Plant extracts are generally inexpensive and can be obtained through simple extraction processes. The objective of this work was to study the use of PP peel extract as a carbon steel corrosion inhibitor (SAE 1020). The electrochemical response was determined by measurements including electrochemical impedance spectroscopy (EIS) and anodic potentiodynamic polarization (PPA) in a 0.5 M sodium chloride medium. The samples were characterized by optical microscopy to evaluate the type of corrosion.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
J. C. Valle-Quitana ◽  
G. F. Dominguez-Patiño ◽  
J. G. Gonzalez-Rodriguez

Phthalocyanine blue dye has been investigated as a carbon steel corrosion inhibitor in 0.5 M sulfuric acid by using polarization curves, electrochemical impedance spectroscopy, and gravimetric tests. Dye concentrations included 0, 100, 200, 400, 600, 800, and 1000 ppm, whereas testing temperatures were 25, 40, and 60°C. Results indicated that phtalocyanine blue is a good corrosion inhibitor with its efficiency increasing with the concentration up to 40°C, but it increases at 60°C. Inhibitor improves the passive film properties and it forms an adherent, compact, protective film, acting, therefore, as an anodic-type inhibitor. At 25 and 40°C the corrosion process was under charge transfer, whereas at 60°C the adsorption/desorption of some species from the metal surface controlled the corrosion process.


2016 ◽  
Vol 2016 ◽  
pp. 1-12
Author(s):  
G. Chan-Rosado ◽  
M. A. Pech-Canul

The inhibition effect of sodium glutarate towards corrosion of carbon steel in neutral 0.02 M NaCl solution was investigated with potentiodynamic polarization and electrochemical impedance measurements. Results of electrochemical measurements revealed a poor inhibitive action for low concentrations (1 mM and 5 mM) and a significant improvement in efficiency for concentrations of 32 mM or higher. The protective film exhibited excellent stability in the temperature range 22°C–55°C. Full chemical passivation was accomplished and analysis of the impedance spectra for the high concentrations of glutarate was consistent with the inhibition mechanism which assumes that the carboxylates support the passivation of carbon steel in aerated solutions by plugging the defect sites and that the passivation process is enhanced by adsorption of the carboxylates on the oxide-covered surface. Such mechanism was confirmed by the XPS analysis.


2021 ◽  
Vol 12 (5) ◽  
pp. 6487-6503

The aim of the present work is to investigate the inhibitory effect of the aerial part of Daucus carota L essential oil (EO) on mild steel in a 1.0M HCl solution. The electrochemical study is performed using potentiodynamic polarization (PDP) curves, and electrochemical impedance spectroscopy (EIS) measurements in the presence of various concentrations of the examined Daucus carota L essential oil (EO). PDP results show that the studied EO behaved as a mixed-type inhibitor. EIS measurements indicated that the EO could inhibit the corrosion of mild steel by the formation of a protective film on the surface of mild steel. The experimental results showed an efficiency of 96.5% for a concentration of 2 g/l. In addition, The DFT results proved that the major components, especially -pinene (23.5%), -Bisabolene (3.96%), and Pseudo limonene (7.20%) having a high electron-accepting ability and interact actively with the iron surface, which may be responsible for the inhibition ability of the investigated EO. Furthermore, the computational complies with the experimental data.


2017 ◽  
Vol 6 (1) ◽  
pp. 897-908
Author(s):  
P. Selva Kumar

The inhibition effect of diethylenetriamine penta(methylene phosphonic acid) (DTPMP) and Trisodium Citrate (TSC) on thecorrosion behavior of stainless steel in 0.5 M H2SO4 solution was investigated by using weight loss method. The combinedcorrosion inhibition efficiency offered 200 ppm of DTPMP and 150 ppm of TSC was 95%. Polarization study showed thatthe inhibitors inhibit stainless steel corrosion through mixed mode and electrochemical impedance spectroscopy (EIS)results confirm the adsorption of the inhibitors at stainless steel/acid interface. The adsorption of DTPMP and TSC ontothe stainless steel surface was found to follow Langmuir adsorption isotherm modes. Negative values of (ΔGads) in theacid media ensured the spontaneity of the adsorption process. The nature of the protective film formed on the metalsurface has been analyzed by FTIR spectra, SEM and AFM analysis. The activation energy (Ea), free energy change(ΔGads), enthalpy change (ΔHads) and entropy change (ΔSads) were calculated to understand the corrosion inhibitionmechanism.


Sign in / Sign up

Export Citation Format

Share Document