Evaluation of corrosion inhibition and adsorption behavior of Thymuszygis subsp. gracilis volatile compounds on mild steel surface in 1 m HCl

2020 ◽  
Vol 38 (2) ◽  
pp. 137-149
Author(s):  
Mohamed Ouknin ◽  
Abderrahmane Romane ◽  
Jean-Pierre Ponthiaux ◽  
Jean Costa ◽  
Lhou Majidi

AbstractThe inhibition effect of Thymus zygis subsp. gracilis (TZ) on mild steel corrosion in 1 m hydrochloric acid has been investigated by weight loss measurements, surface analysis [scanning electron microscopy (SEM)-energy-dispersive X-ray (EDX), three-dimensional (3D) profilometry, and Fourier transform infrared analysis], potentiodynamic polarization, and electrochemical impedance spectroscopy (EIS). Gravimetric results indicate that TZ exhibits good inhibition efficiency of 80.40% attained at 3 g/l. Polarization measurements show that the studied inhibitor is a mixed type. EIS measurements revealed that the charge transfer resistance increases with increasing concentration of TZ, which suggests a Langmuir adsorption isotherm model. Based on SEM-EDX and 3D profilometry, it appears that the surface is remarkably improved in the presence of TZ oil compared to that exposed to the acid medium without TZ oil. From the obtained results, it can be concluded that this oil is a new natural substance that can be used against material corrosion in aggressive medium.

2013 ◽  
Vol 2013 ◽  
pp. 1-9 ◽  
Author(s):  
Chikkur B. Pradeep Kumar ◽  
Kikkeri N. Mohana

Achyranthes aspera (AA) extracts were studied as corrosion inhibitor for mild steel (MS) in industrial water medium using mass loss and electrochemical techniques. The results of the study revealed that AA extracts inhibit MS corrosion through adsorption process following Langmuir adsorption isotherm model. The protection efficiency increased with increase in inhibitor concentration and decreased with temperature. The electrochemical impedance spectroscopy (EIS) measurements showed that the charge transfer resistance increases with increase in the concentration of AA extracts. The polarization curves obtained indicate that AA extracts act as mixed type of inhibitor. Scanning electron microscopy (SEM) was used to analyze the surface adsorbed film.


2012 ◽  
Vol 549 ◽  
pp. 449-452
Author(s):  
Yong Ming Sun

The effect of propanediyl-α, ω-bis-(N-dodecyl benzimidazole ammonium bromide), (abbreviated as BIMGCS12-3), as the inhibitor for the corrosion of mild steel in 1M vitriolic acid was tested. It was found by Tafel polarization curves that BIMGCS12-3 as mixed type inhibitor adsorbed on the mild steel surface forming a protecting film. EIS measurements were carried out in a frequency range of 100kHz to 10mHz with amplitude of 5mV using ac signals at open circuit potential. Changes in impedance parameters (charge transfer resistance, Rct, and double layer capacitance, Cdl) were indicative of the feasibility of BIMGCS12-3 as excellent mild steel corrosion inhibitor in 1M sulfuric acid. Surface morphology of the specimens was examined by SEM.


2019 ◽  
Vol 37 (5) ◽  
pp. 657-678
Author(s):  
Muazzam Ghous Sohail ◽  
Mohammad Salih ◽  
Nasser Al Nuaimi ◽  
Ramazan Kahraman

Purpose The purpose of this paper is to present the results of a two-year long study carried out in order to evaluate the corrosion performance of mild steel bare bars (BB) and epoxy-coated rebar (ECR) in concrete under a simulated harsh environment of chlorides. Design/methodology/approach The blocks are subjected to Southern Exposure testing. The electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR) and Tafel plot are performed to measure the polarization resistance and corrosion current densities of these rebars. Knife-peel test was performed to assess the adhesion between epoxy and underlying steel after two years of exposure. Findings Mild steel BB showed a high corrosion current density of 1.24 µA/ cm2 in Tafel plots and a very low polarization resistance of 4.5 kΩ cm2 in LPR technique, whereas very high charge transfer resistance of 1672 and 1675 kΩ cm2 is observed on ECR and ECR with controlled damage (ECRCD), through EIS technique, respectively. EIS is observed to be a suitable tool to detect the defects in epoxy coatings. After two years of immersion in 3.89 percent NaCl− solution, the mild steel BB were severely corroded and a considerable weight loss was observed, whereas under heavy chloride attack, ECR showed no deterioration of epoxy coating and neither any corrosion of underlying steel. Results of this study show that the durability of reinforced concrete (RC) structures with respect to corrosion could be enhanced by using ECR, especially in harsh climatic conditions. Originality/value The corrosion performance of mild steel and ECR in concrete under a simulating splash zone environment is evaluated. EIS was used to evaluate the health of epoxy and corrosion state of underneath steel rebars. EIS was able to detect the defects in epoxy. The durability of RC structures could be enhanced in harsh climate regions by using ECR.


2009 ◽  
Vol 16 (01) ◽  
pp. 141-147 ◽  
Author(s):  
A. N. SENTHILKUMAR ◽  
K. THARINI ◽  
M. G. SETHURAMAN

Three piperidin-4-one oxime derivatives viz. 3,5-dimethyl-2,6-diphenyl-piperidin-4-one oxime (DDPO), 3-ethyl-2,6-diphenyl-piperidin-4-one oxime (EDPO), and 1-methyl-3-isopropyl-2, 6-diphenyl-piperidin-4-one oxime (MIDPO) were synthesized. Corrosion inhibiting ability of these compounds in 1 M HCl was studied using weight loss study, potentiodynamic polarization measurements, electrochemical impedance spectroscopy, XRD and SEM with EDS measurements. Weight loss studies revealed that all the three oximes are good corrosion inhibitors. The order of inhibiting ability of these compounds is as follows: DDPO > EDPO > MINDO. Results of the polarization measurement showed that these inhibitors do not alter the mechanism of either hydrogen evolution or mild steel dissolution reaction, proving the mixed mode of inhibition. At constant acid concentration, increase of inhibitor concentration increased the charge transfer resistance (R ct ), complimented with decrease of double layer capacitance (C dl ), thereby indicating the increase of percentage inhibition efficiency. XRD and SEM with EDS analysis provided strong proof for the existence of inhibitor film over the mild steel surface.


2012 ◽  
Vol 512-515 ◽  
pp. 1933-1936
Author(s):  
Yu Qing Qiao ◽  
Min Shou Zhao ◽  
Li Min Wang

Microstructure and electrode characteristics of Ti-V-Cu-Cr-Ni metal hydride electrode alloy have been investigated by XRD, FESEM-EDS and EIS measurements. The result shows that the alloy is mainly composed of V-based solid solution phase with body-centered-cubic structure and TiNi-based secondary phase. The discharge capacity increases with increasing temperature in a wider temperature region from 303 K to 343 K. The result of electrochemical impedance spectrometry indicates that the charge transfer resistance decreases with increasing temperature, while the exchange current density in the bulk of the alloy increase with increasing temperature.


2020 ◽  
Vol 27 (09) ◽  
pp. 1950208
Author(s):  
K. A. KARTHICK ◽  
D. S. BHUVANESHWARI ◽  
D. UMAPATHI ◽  
PANDIAN BOTHI RAJA

Canthium parviflorum leaf extract (CPLE) was utilized for corrosion prevention against mild steel (MS) in 0.5[Formula: see text]mol[Formula: see text]L[Formula: see text] H2SO4 test medium. Standard corrosion measurement techniques (gravimetric and electrochemical) were employed for this purpose. Gravimetric tests clearly confirmed that the prepared CPLE efficiently performs as corrosion inhibitor. Potentiodynamic polarization measurements (PPM) and electrochemical impedance spectroscopy (EIS) measurements were performed in order to analyze the charge transfer process of CPLE. Polarization curves indicate that CPLE acts through mixed mode inhibition. Impedance study reveals that the CPLE additives enhances the charge transfer resistance values and conversely decreases values of double layer capacitance. Scanning electron microscopy (SEM), Ultraviolet-Visible (UV-Vis) spectroscopy analysis and Fourier-Transform Infrared spectroscopy (FTIR) were done to confirm the Fe-CPLE complex formation on MS. The effect of temperature reveals that the inhibition efficiency increases with decrease in temperature and increase in concentration of CPLE (maximum of 4[Formula: see text]mg[Formula: see text]L[Formula: see text]). The adsorption of CPLE shows that it obeys Langmuir’s isotherm model with free energy of adsorption, [Formula: see text][Formula: see text]kJ mol[Formula: see text]. A suitable adsorption model is also proposed.


Author(s):  
Toshiyasu Nishimura

It is important to estimate the corrosion of reinforcing steel in mortar facilities, because the nuclear plants are located near the sea side. In the case of environmental factors in mortar, the Cl ion concentration and pH were monitored by inserting microelectrodes into artificial pores in the mortar. At the same time, the corrosion behavior of the reinforcing steel was investigated by EIS (electrochemical impedance spectroscopy). In the EIS measurements of the reinforcing steel, diffusion behavior was confirmed in the initial period, but diffusion could no longer be observed after 35 day. In comparison with a 10mm cover thickness, a 20mm cover thickness showed a higher impedance behavior. The Cl ion concentration in the mortar was obtained using Ag/AgCl microelectrodes, showing that this behavior is generally controlled by diffusion. When the diffusion equation was used in this work, the diffusion coefficient (Dc) showed a high value of Dc = 2×10−4 mm2/sec. Similarly, the pH in the mortar was obtained using W/WOx microelectrodes. With a 20mm cover thickness, pH was limited to approximately pH11, but with a 10mm cover thickness, pH continued to decrease to around pH9.5. The latter phenomenon was considered to be the result of neutralization by penetration of the immersion solution from the surface. Based on the results of monitoring with the microelectrodes, solutions simulating those in the pores in mortar were prepared and used in EIS measurements. The charge transfer resistance Rct in the simulated solutions showed good correspondence with the impedance in the low frequency region (2mHz) in the actual mortar. This is attributed to the fact that the corrosion of reinforcing steel was controlled by the solution conditions (mainly Cl concentration and pH) in the pores in mortar. If these solution conditions (Cl concentration, pH) exceed threshold values, it was found that the passivation film is destroyed, resulting in high corrosion.


2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
T. K. Chaitra ◽  
K. N. Mohana ◽  
H. C. Tandon

Three new thiazole based pyridine derivatives 5-(4-methoxy-phenyl)-thiazole-2-carboxylic acid pyridin-2-ylmethylene-hydrazide (2-MTPH), 5-(4-methoxy-phenyl)-thiazole-2-carboxylic acid pyridin-3-ylmethylene-hydrazide (3-MTPH), and 5-(4-methoxy-phenyl)-thiazole-2-carboxylic acid pyridin-4-ylmethylene-hydrazide (4-MTPH) were synthesized and characterized. Corrosion inhibition performance of the prepared compounds on mild steel in 0.5 M HCl was studied using gravimetric, potentiodynamic polarisation, and electrochemical impedance techniques. Inhibition efficiency has direct relation with concentration and inverse relation with temperature. Thermodynamic parameters for dissolution and adsorption process were evaluated. Polarisation study reveals that compounds act as both anodic and cathodic inhibitors with emphasis on the former. Impedance study shows that decrease in charge transfer resistance is responsible for effective protection of steel surface by inhibitors. The film formed on the mild steel was investigated using FTIR, SEM, and EDX spectroscopy. Quantum chemical parameters likeEHOMO,ELUMO,ΔE, hardness, softness, and ionisation potential were calculated. Higher value ofEHOMOand lower value ofΔEindicate the better inhibition efficiency of the compounds. Lower ionisation potential of inhibitors indicates higher reactivity and lower chemical stability.


2018 ◽  
Vol 778 ◽  
pp. 111-117 ◽  
Author(s):  
Zaeem Ur Rehman ◽  
Mohsin Ali Raza ◽  
Faizan Ali Ghauri ◽  
Rumasa Kanwal ◽  
Akhlaq Ahmad ◽  
...  

In this study graphene coatings were deposited on mild steel substrate using feasible and environmental friendly method. The successful synthesis of graphite oxide was carried by the modified Hummer’s method. Graphene oxide (GO) coatings were developed from GO/water suspension using electrophoretic deposition (EPD). The EPD parameters voltage and deposition time were varied to deposit uniform adherent coatings. The coatings were post heat treated at 200 °C in vacuum for 4h to assess the effect on coated samples. GO and GO-EPD coating morphology were characterized using Fourier transform infrared spectroscopy (FTIR), Atomic force microscopy (AFM) and Scanning electron microscopy (SEM). Linear polarization (LPR) and electrochemical impedance spectroscopy (EIS) tests were performed in saline solution to evaluate electrochemical response. Coatings were partially reduced due to removal of oxygen containing functional groups during EPD and post heat treatments. The GO post heat treated coating had better corrosion resistance ~2 times than that of bare mild steel and higher charge transfer resistance.


Metals ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 933 ◽  
Author(s):  
Lucien Veleva ◽  
Mareny Guadalupe Fernández-Olaya ◽  
Sebastián Feliu

The initial stages of corrosion of AZ31B magnesium alloy, immersed in Ringer′s solution at 37 °C body temperature for four days, have been evaluated by independent gravimetric and chemical methods and through electrochemical impedance spectroscopy (EIS) measurements. The corrosion current densities estimated by hydrogen evolution are in good agreement with the time-integrated reciprocal charge transfer resistance values estimated by EIS. The change in the inductive behavior has been correlated with difference in the chemical composition of corrosion layers. At the shorter immersion of 2 days, EDS analysis of cross section of the uniform corrosion layer detected Cl and Al elements, perhaps as formed aluminum oxychlorides salts.


Sign in / Sign up

Export Citation Format

Share Document