scholarly journals Prevalence and Antimicrobial Resistance of Foodborne Pathogens in Sentinel Dairy Farms

2021 ◽  
Vol 3 (5) ◽  
pp. 67-71
Author(s):  
S. A. Baluka ◽  
L.N. Musisi ◽  
L. S. Y. Buyinza ◽  
F. Ejobi

Dairy cattle are common carriers of important foodborne pathogens. Escherichia coli, Salmonella and Campylobacter jejuni are among the commonest causes of foodborne diseases. The high prevalence of microbial infections is escalating antimicrobial usage in human health and for growth promotion and prophylaxis in animal health. Overuse of antimicrobials is increasing antimicrobial residues in animal source foods and accelerating antimicrobial resistance. The study collected 184 samples from 33 dairy farms and assessed the prevalence of Escherichia coli, Salmonella and Campylobacter jejuni and their AMR. Sample inoculation for bacterial isolation was by agar surface streaking method and broth dilution. Escherichia coli was isolated on Chromogenic Coliform agar at 37°C for 24 hour forming dark blue colonies confirmed by Indole, Methyl Red, Voges-Proskauer and Citrate biochemical tests. Escherichia coli antimicrobial susceptibility testing was done by a single disc diffusion method against eight standard antibiotics. Sensitive, Intermediate and Resistant system was used for reporting antimicrobial susceptibility testing results. Escherichia coli was isolated in 21.7% samples, Campylobacter jejuni and Salmonella were absent. Escherichia coli was isolated in fecal samples from 48.5% of study farms, 56.9% of fecal and 4.8% of water samples and not isolated in all milk samples tested. All Escherichia coli isolates were susceptible to gentamycin, ciprofloxacin, cefoxitin and cefotaxime but 9 were resistant to ampicillin, oxacillin, ceftazidime, and ceftriaxone, produced 4 penicillinase and 1 beta-lactamase while 4 didn’t exhibit any specific resistance mechanism. Aminoglycosides, quinolones, and furans showed no resistance. When stratified by sample, 7 fecal Escherichia coli isolates showed resistance compared to 2 water isolates. All fecal and water isolates were resistant to oxacillin. The majority of Beta-lactamase and penicillinase producing isolates were from fecal samples. Oxacillin was widely resisted hence it should not be used in routine treatment of bacterial infections to avoid treatment failures. All Escherichia coli isolates were susceptible to gentamycin, ciprofloxacin, cefoxitin and cefotaxime, 9 were resistant to ampicillin, oxacillin, ceftazidime, and ceftriaxone, produced 4 penicillinase and 1 beta-lactamase. Aminoglycosides, quinolones, and furans showed no resistance. There is a need to conduct continuous professional development training programmes for veterinarians and veterinary paraprofessionals to promote prudent use of antimicrobials. Access and use of gentamycin, ciproflaxacin, cefoxitin and cefotaxime by dairy farmers and unqualified people should be restricted to prevent or delay resistance to these four.

2011 ◽  
Vol 74 (8) ◽  
pp. 1245-1251 ◽  
Author(s):  
ANGELA COOK ◽  
RICHARD J. REID-SMITH ◽  
REBECCA J. IRWIN ◽  
SCOTT A. McEWEN ◽  
VIRGINIA YOUNG ◽  
...  

This study estimated the prevalence of Salmonella, Campylobacter, and Escherichia coli isolates in fresh retail grain-fed veal obtained in Ontario, Canada. The prevalence and antimicrobial resistance patterns were examined for points of public health significance. Veal samples (n = 528) were collected from February 2003 through May 2004. Twenty-one Salmonella isolates were recovered from 18 (4%) of 438 samples and underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 6 (29%) of 21 Salmonella isolates; 5 (24%) of 21 isolates were resistant to five or more antimicrobials. No resistance to antimicrobials of very high human health importance was observed. Ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance was found in 5 (3%) of 21 Salmonella isolates. Campylobacter isolates were recovered from 5 (1%) of 438 samples; 6 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was documented in 3 (50%) of 6 Campylobacter isolates. No Campylobacter isolates were resistant to five or more antimicrobials or category I antimicrobials. E. coli isolates were recovered from 387 (88%) of 438 samples; 1,258 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 678 (54%) of 1,258 E. coli isolates; 128 (10%) of 1,258 were resistant to five or more antimicrobials. Five (0.4%) and 7 (0.6%) of 1,258 E. coli isolates were resistant to ceftiofur and ceftriaxone, respectively, while 34 (3%) of 1,258 were resistant to nalidixic acid. Ciprofloxacin resistance was not detected. There were 101 different resistance patterns observed among E. coli isolates; resistance to tetracycline alone (12.7%, 161 of 1,258) was most frequently observed. This study provides baseline prevalence and antimicrobial resistance data and highlights potential public health concerns.


2014 ◽  
Vol 6 (2) ◽  
pp. 45-53
Author(s):  
Dubravka Milanov ◽  
Dragan Fabijan ◽  
Bojana Prunić ◽  
Maja Velhner ◽  
Tamaš Petrović

Fecal samples originating from 15 Eurasian griffon vultures were collected during June 2012 in the territory of special nature reservation Uvac and examined for presence of enteric bacteria Escherichia coli and Salmonella spp. Salmonellas were isolated from five samples (33.3%) and serologically typed as Salmonella enterica subsp. enterica ser. Veneziana. E. coli was isolated from four samples (26.6%). Antimicrobial susceptibility testing revealed resistance to one and more antibiotics only in E. coli isolates.


2021 ◽  
Vol 9 (6) ◽  
pp. 1319
Author(s):  
Xi Wang ◽  
W. Evan Chaney ◽  
Hilary O. Pavlidis ◽  
James P. McGinnis ◽  
J. Allen Byrd ◽  
...  

Monitoring antimicrobial resistance of foodborne pathogens in poultry is critical for food safety. We aimed to compare antimicrobial resistance phenotypes in Salmonella isolated from poultry samples as influenced by isolation and antimicrobial susceptibility testing methods. Salmonella isolates were cultured from a convenience sample of commercial broiler ceca with and without selective broth enrichment, and resistance phenotypes were determined for 14 antimicrobials using the Sensititre® platform and a qualitative broth breakpoint assay. The broth breakpoint method reported higher resistance to chloramphenicol, sulfisoxazole, and the combination of trimethoprim and sulfamethoxazole, and lower resistance to streptomycin as compared to the Sensititre® assay in trial one. Selective enrichment of samples containing Salmonella in Rappaport-Vassiliadis broth reported lowered detectable resistance to amoxicillin/clavulanic acid, ampicillin, azithromycin, cefoxitin, ceftriaxone, nalidixic acid, and meropenem, and increased resistance to streptomycin and tetracycline than direct-plating samples in trial one. Using matched isolates in trial two, the Sensititre® assay reported higher resistance to chloramphenicol and gentamicin, and lower resistance to nalidixic acid as compared to the broth breakpoint method. These results suggest methodology is a critical consideration in the detection and surveillance of antimicrobial resistance phenotypes in Salmonella isolates from poultry samples and could affect the accuracy of population or industry surveillance insights and intervention strategies.


2021 ◽  
Vol 11 (5) ◽  
pp. 41-52
Author(s):  
Stephen Mwisiya Mubita ◽  
Wila Simbile ◽  
Barbara Mulunda

Background: The ever-increasing magnitude of antimicrobial resistance encountered in human pathogens has led to limited treatment options for bacterial infections, consequently reducing antimicrobial efficacy while increasing treatment costs, morbidity, and mortality. In clinical setup, laboratory-based in vitro antimicrobial susceptibility testing is the cornerstone for guiding therapy and enables the monitoring of antimicrobial resistance trends. Aim: To characterize the distribution of bacteria isolated from various specimens and their antibiotic susceptibility profiles in Mary Begg Health facilities. Material & Methods: This was a retrospective, cross-sectional, quantitative, descriptive study that involved the review of 569 laboratory files from three Mary Begg Health facilities from the period of January 2019 to June 2020. A systematic random sampling method was used and SPSS version 21.0 was used for data analysis. Results: The distribution of bacteria based on Gram stain reaction found that most bacteria that were isolated were Gram negative bacilli, 79.5% (171/215). The most common bacterium isolated was Escherichia coli, 46.5% (100/215) followed by Staphylococcus aureus, 12.1% (26/215) and Klebsiella pneumoniae, 17 7.9% (17/215). The study found that E. coli was highly resistant to amoxicillin (95.0%), Ampicillin (90.0%) and Cotrimoxazole (77.0%), respectively. In contrast, E. coli was highly sensitive to Amikacin (96.0%), Ertapenem (91.0%) and Ceftriaxone (80.0%) S. aureus species isolated were sensitive to Gentamicin (65.4%) and Clindamycin (46.2%) but highly resistant to Cotrimoxazole (80.8%). Conclusion: The most frequent isolates were Escherichia coli followed by Staphylococcus aureus and majority of them were from urine specimens. Key words: Antimicrobial, Resistant, Antimicrobial Resistance, Antimicrobial susceptibility testing, Mary Begg Health services.


2010 ◽  
Vol 54 (7) ◽  
pp. 3043-3046 ◽  
Author(s):  
Stephen P. Hawser ◽  
Samuel K. Bouchillon ◽  
Daryl J. Hoban ◽  
Robert E. Badal ◽  
Rafael Cantón ◽  
...  

ABSTRACT From 2002 to 2008, there was a significant increase in extended-spectrum beta-lactamase (ESBL)-positive Escherichia coli isolates in European intra-abdominal infections, from 4.3% in 2002 to 11.8% in 2008 (P < 0.001), but not for ESBL-positive Klebsiella pneumoniae isolates (16.4% to 17.9% [P > 0.05]). Hospital-associated isolates were more common than community-associated isolates, at 14.0% versus 6.5%, respectively, for E. coli (P < 0.001) and 20.9% versus 5.3%, respectively, for K. pneumoniae (P < 0.01). Carbapenems were consistently the most active drugs tested.


2020 ◽  
Vol 13 (2) ◽  
pp. 360-363
Author(s):  
Shikha Tamta ◽  
Obli Rajendran Vinodh Kumar ◽  
Shiv Varan Singh ◽  
Bommenahalli Siddaramiah Pruthvishree ◽  
Ravichandran Karthikeyan ◽  
...  

Background and Aim: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are gradually increasing worldwide and carry a serious public threat. This study aimed to determine the antimicrobial resistance pattern of ESBL-producing E. coli isolated from fecal samples of piglets and pig farm workers. Materials and Methods: Fecal samples from <3-month-old piglets (n=156) and farm workers (n=21) were processed for the isolation of ESBL-producing E. coli in MacConkey agar added with 1 μg/mL of cefotaxime. E. coli (piglets=124; farm workers=21) were tested for ESBL production by combined disk method and ESBL E-strip test. Each of the ESBL-positive isolate was subjected to antibiotic susceptibility testing. The ESBL-producing E. coli were further processed for genotypic confirmation to CTX-M gene. Results: A total of 55 (44.4%, 55/124) and nine (42.9%, 9/21) ESBL-producing E. coli were isolated from piglets and farm workers, respectively. Antibiotic susceptibility testing of the ESBL-positive E. coli isolates from piglets and farm workers showed 100% resistance to ceftazidime, cefotaxime, cefotaxime/clavulanic acid, ceftazidime/clavulanic acid, and cefpodoxime. A proportion of 100% (55/55) and 88.9% (8/9) ESBL-positive E. coli were multidrug resistance (MDR) in piglets and farm workers, respectively. On genotypic screening of the ESBL E. coli isolated from piglets (n=55), 15 were positive for the blaCTX-M gene and of the nine ESBL E. coli from farm workers, none were positive for the blaCTX-M gene. Conclusion: Although there was no significant difference in isolation of ESBL-producing E. coli between piglets and farm workers, the ESBL-positive E. coli from piglets showed relatively higher MDR than farm workers.


Sign in / Sign up

Export Citation Format

Share Document