scholarly journals Antimicrobial resistance pattern of extended-spectrum β-lactamase-producing Escherichia coli isolated from fecal samples of piglets and pig farm workers of selected organized farms of India

2020 ◽  
Vol 13 (2) ◽  
pp. 360-363
Author(s):  
Shikha Tamta ◽  
Obli Rajendran Vinodh Kumar ◽  
Shiv Varan Singh ◽  
Bommenahalli Siddaramiah Pruthvishree ◽  
Ravichandran Karthikeyan ◽  
...  

Background and Aim: Extended-spectrum β-lactamase (ESBL)-producing Escherichia coli are gradually increasing worldwide and carry a serious public threat. This study aimed to determine the antimicrobial resistance pattern of ESBL-producing E. coli isolated from fecal samples of piglets and pig farm workers. Materials and Methods: Fecal samples from <3-month-old piglets (n=156) and farm workers (n=21) were processed for the isolation of ESBL-producing E. coli in MacConkey agar added with 1 μg/mL of cefotaxime. E. coli (piglets=124; farm workers=21) were tested for ESBL production by combined disk method and ESBL E-strip test. Each of the ESBL-positive isolate was subjected to antibiotic susceptibility testing. The ESBL-producing E. coli were further processed for genotypic confirmation to CTX-M gene. Results: A total of 55 (44.4%, 55/124) and nine (42.9%, 9/21) ESBL-producing E. coli were isolated from piglets and farm workers, respectively. Antibiotic susceptibility testing of the ESBL-positive E. coli isolates from piglets and farm workers showed 100% resistance to ceftazidime, cefotaxime, cefotaxime/clavulanic acid, ceftazidime/clavulanic acid, and cefpodoxime. A proportion of 100% (55/55) and 88.9% (8/9) ESBL-positive E. coli were multidrug resistance (MDR) in piglets and farm workers, respectively. On genotypic screening of the ESBL E. coli isolated from piglets (n=55), 15 were positive for the blaCTX-M gene and of the nine ESBL E. coli from farm workers, none were positive for the blaCTX-M gene. Conclusion: Although there was no significant difference in isolation of ESBL-producing E. coli between piglets and farm workers, the ESBL-positive E. coli from piglets showed relatively higher MDR than farm workers.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Pimlapas Leekitcharoenphon ◽  
Markus Hans Kristofer Johansson ◽  
Patrick Munk ◽  
Burkhard Malorny ◽  
Magdalena Skarżyńska ◽  
...  

AbstractThe emergence of antimicrobial resistance (AMR) is one of the biggest health threats globally. In addition, the use of antimicrobial drugs in humans and livestock is considered an important driver of antimicrobial resistance. The commensal microbiota, and especially the intestinal microbiota, has been shown to have an important role in the emergence of AMR. Mobile genetic elements (MGEs) also play a central role in facilitating the acquisition and spread of AMR genes. We isolated Escherichia coli (n = 627) from fecal samples in respectively 25 poultry, 28 swine, and 15 veal calf herds from 6 European countries to investigate the phylogeny of E. coli at country, animal host and farm levels. Furthermore, we examine the evolution of AMR in E. coli genomes including an association with virulence genes, plasmids and MGEs. We compared the abundance metrics retrieved from metagenomic sequencing and whole genome sequenced of E. coli isolates from the same fecal samples and farms. The E. coli isolates in this study indicated no clonality or clustering based on country of origin and genetic markers; AMR, and MGEs. Nonetheless, mobile genetic elements play a role in the acquisition of AMR and virulence genes. Additionally, an abundance of AMR was agreeable between metagenomic and whole genome sequencing analysis for several AMR classes in poultry fecal samples suggesting that metagenomics could be used as an indicator for surveillance of AMR in E. coli isolates and vice versa.


2011 ◽  
Vol 74 (8) ◽  
pp. 1245-1251 ◽  
Author(s):  
ANGELA COOK ◽  
RICHARD J. REID-SMITH ◽  
REBECCA J. IRWIN ◽  
SCOTT A. McEWEN ◽  
VIRGINIA YOUNG ◽  
...  

This study estimated the prevalence of Salmonella, Campylobacter, and Escherichia coli isolates in fresh retail grain-fed veal obtained in Ontario, Canada. The prevalence and antimicrobial resistance patterns were examined for points of public health significance. Veal samples (n = 528) were collected from February 2003 through May 2004. Twenty-one Salmonella isolates were recovered from 18 (4%) of 438 samples and underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 6 (29%) of 21 Salmonella isolates; 5 (24%) of 21 isolates were resistant to five or more antimicrobials. No resistance to antimicrobials of very high human health importance was observed. Ampicillin-chloramphenicol-streptomycin-sulfamethoxazole-tetracycline resistance was found in 5 (3%) of 21 Salmonella isolates. Campylobacter isolates were recovered from 5 (1%) of 438 samples; 6 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was documented in 3 (50%) of 6 Campylobacter isolates. No Campylobacter isolates were resistant to five or more antimicrobials or category I antimicrobials. E. coli isolates were recovered from 387 (88%) of 438 samples; 1,258 isolates underwent antimicrobial susceptibility testing. Resistance to one or more antimicrobials was found in 678 (54%) of 1,258 E. coli isolates; 128 (10%) of 1,258 were resistant to five or more antimicrobials. Five (0.4%) and 7 (0.6%) of 1,258 E. coli isolates were resistant to ceftiofur and ceftriaxone, respectively, while 34 (3%) of 1,258 were resistant to nalidixic acid. Ciprofloxacin resistance was not detected. There were 101 different resistance patterns observed among E. coli isolates; resistance to tetracycline alone (12.7%, 161 of 1,258) was most frequently observed. This study provides baseline prevalence and antimicrobial resistance data and highlights potential public health concerns.


Pathogens ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 420 ◽  
Author(s):  
Mst. Sonia Parvin ◽  
Sudipta Talukder ◽  
Md. Yamin Ali ◽  
Emdadul Haque Chowdhury ◽  
Md. Tanvir Rahman ◽  
...  

Escherichia coli is known as one of the most important foodborne pathogens in humans, and contaminated chicken meat is an important source of foodborne infection with this bacterium. The occurrence of extended-spectrum β-lactamase (ESBL)-producing E. coli (ESBL-Ec), in particular, in chicken meat is considered a global health problem. This study aimed to determine the magnitude of E. coli, with special emphasis on ESBL-Ec, along with their phenotypic antimicrobial resistance pattern in frozen chicken meat. The study also focused on the determination of ESBL-encoding genes in E. coli. A total of 113 frozen chicken meat samples were purchased from 40 outlets of nine branded supershops in five megacities in Bangladesh. Isolation and identification of E. coli were done based on cultural and biochemical properties, as well as PCR assay. The resistance pattern was determined by the disc diffusion method. ESBL-encoding genes were determined by multiplex PCR. The results showed that 76.1% of samples were positive for E. coli, of which 86% were ESBL producers. All the isolates were multidrug-resistant (MDR). Resistance to 9–11 and 12–13 antimicrobial classes was observed in 38.4% and 17.4% isolates, respectively, while only 11.6% were resistant to 3–5 classes. Possible extensive drug resistance (pXDR) was found in 2.3% of isolates. High single resistance was observed for oxytetracycline (93%) and amoxicillin (91.9%), followed by ampicillin (89.5%), trimethoprim–sulfamethoxazole, and pefloxacin (88.4%), and tetracycline (84.9%). Most importantly, 89.6% of isolates were resistant to carbapenems. All the isolates were positive for the blaTEM gene. However, the blaSHV and blaCTX-M-2 genes were identified in two ESBL-non producer isolates. None of the isolates carried the blaCTX-M-1 gene. This study provided evidence of the existence of MDR and pXDR ESBL-Ec in frozen chicken meat in Bangladesh, which may pose a risk to human health if the meat is not properly cooked or pickled raw only. This emphasizes the importance of the implementation of good slaughtering and processing practices by the processors.


2008 ◽  
Vol 74 (6) ◽  
pp. 1731-1739 ◽  
Author(s):  
Bruce A. Wagner ◽  
Barbara E. Straw ◽  
Paula J. Fedorka-Cray ◽  
David A. Dargatz

ABSTRACT A body of evidence exists that suggests that antimicrobial use in food animals leads to resistance in both pathogenic and commensal bacteria. This study focused on the impact of three different antimicrobial regimes (low-level continuous, pulse, and no antimicrobial) for two antimicrobials (chlortetracycline and tylosin) on the presence of Salmonella spp. and on the prevalence of antimicrobial resistance of both Salmonella spp. and nonspecific Escherichia coli in fecal samples from feeder swine. The prevalence of fecal samples positive for Salmonella spp. significantly decreased between the samples taken at feeder placement compared to samples taken when the animals were close to market weight. Differences in resistance of Salmonella spp. did not appear to be influenced by dosing treatment including the control. Analysis of antimicrobial resistance examining both susceptibility and resistance, as well as MIC outcomes, demonstrated that only resistance to cephalothin increased in E. coli under the pulse chlortetracycline treatment. These results suggest that the dosing regimes examined in this study did not lead to an increase in either the prevalence of Salmonella spp. or the prevalence of antimicrobial resistance in isolates of Salmonella spp. or E. coli.


2007 ◽  
Vol 74 (2) ◽  
pp. 391-395 ◽  
Author(s):  
Artashes R. Khachatryan ◽  
Thomas E. Besser ◽  
Douglas R. Call

ABSTRACT Association of specific antimicrobial resistance patterns with unrelated selective traits has long been implicated in the maintenance of antimicrobial resistance in a population. Previously we demonstrated that Escherichia coli strains with a specific resistance pattern (resistant to streptomycin, sulfadiazine, and tetracycline [SSuT]) have a selective advantage in dairy calf intestinal environments and in the presence of a milk supplement commonly fed to the calves. In the present study we identified the sequence of the genetic element that confers the SSuT phenotype and show that this element is present in a genetically diverse group of E. coli isolates, as assessed by macrorestriction digestion and pulsed-field gel electrophoresis. This element was also found in E. coli isolates from 18 different cattle farms in Washington State. Using in vitro competition experiments we further demonstrated that SSuT strains from 17 of 18 farms were able to outcompete pansusceptible strains. In a separate set of experiments, we were able to transfer the antimicrobial resistance phenotype by electroporation to a laboratory strain of E. coli (DH10B), making that new strain more competitive during in vitro competition with the parental DH10B strain. These data indicate that a relatively large genetic element conferring the SSuT phenotype is widely distributed in E. coli from cattle in Washington State. Furthermore, our results indicate that this element is responsible for maintenance of these traits owing to linkage to genetic traits that confer a selective advantage in the intestinal lumens of dairy calves.


2018 ◽  
Vol 46 (1) ◽  
pp. 8 ◽  
Author(s):  
Aniroot Nuangmek ◽  
Suvichai Rojanasthien ◽  
Suwit Chotinun ◽  
Panuwat Yamsakul ◽  
Pakpoom Tadee ◽  
...  

Background: Study of drug resistance of commensal bacteria in both humans and animals can determine the scale of the drug resistance problem. Usage of antimicrobials to treat infections in humans and animals has generated extensive antimicrobial pressure not only on targeted pathogens but also on commensal bacteria. Commensal Escherichia coli appears to be the major reservoir for resistant genes implicated in the transmission of genetic traits from one bacterium to another. Antimicrobial resistance in Enterobacteriaceae has increased dramatically worldwide in the last decade. An increasing number of community-onset extended-spectrum beta-lactamase (ESBL)-producing bacterial infections, especially those caused by ESBL-producing E. coli, have been reported in many countries, including Thailand. Moreover, ESBL-producing E. coli have been widely detected in food-producing animals and the environment. The increased use of ESBLs in food animals is a serious public health problem. The objective of the study was to determine the prevalence and antimicrobial resistance pattern of ESBL-producing E. coli isolated from pigs, layers, farm workers and stagnant water, in order to increase awareness about antimicrobial usage on farms and to minimize the expansion of the antimicrobial resistance phenomenon in farm settings.Materials, Methods & Results: A total of 588 samples were collected from 107 pig farms and 89 layer farms in Chiang Mai–Lamphun and Chon Buri provinces during May 2015-April 2016. Double-disk diffusion method according to EUCAST (European Committee on Antimicrobial Susceptibility Testing) guidelines was used for detection. The results demonstrated that 36.7% (216/588) of samples were ESBL-producing E. coli-positive, including rectal swabs 74.8% (80/107), pig farm worker stool swabs 57.0% (61/107), stagnant water on pig farms 21.5% (23/107), healthy layer rectal swabs 6.7% (6/89) and layer farm worker stool swabs 51.7% (46/89). Most of the isolates were resistant against ampicillin (99.5%), followed by erythromycin (98.6%) and ceftriaxone (96.3%). All of them were classified as multidrug-resistant strains. Moreover, AMP-CRO-E-TE-C-SXT-CN was the most frequent phenotype pattern detected in animals, humans and the environment, followed by AMP-CRO-E-TE-C-SXT-NA-CN.Discussion: The present study offers clear evidence that the prevalence of ESBL-producing E. coli in healthy pigs is higher than in layers. One possible explanation is that a large amount and variety of antimicrobials are used on pig farms, resulting in a common and significant source of drug-resistant ESBL-producing E. coli. The lower incidence of ESBL-producing E. coli in samples from a pig farm environment than in samples of animal origin indicate that pigs are a reservoir of a reservoir for resistant bacteria and a source of environmental contamination. Antimicrobial resistance patterns of ESBLproducing E. coli detected in all sample types and study locations were quite similar. In almost all ESBL-producing E. coli isolates, resistance was shown against ampicillin, erythromycin, ceftriaxone, tetracycline and chloramphenicol. Moreover, multidrug resistance was found in all isolates of ESBL-producing E. coli. The differences in antimicrobial agent resistance patterns can be used to differentiate sources by employing analytical tools such as discriminant function analysis. A molecular typing protocol is recommended for use in a discriminant function analysis for pattern determination of pathogen spreading. However, genetic fingerprinting techniques for microbial source tracking are more expensive, and facilities with appropriate equipment and expertise are required.


2014 ◽  
Vol 6 (2) ◽  
pp. 45-53
Author(s):  
Dubravka Milanov ◽  
Dragan Fabijan ◽  
Bojana Prunić ◽  
Maja Velhner ◽  
Tamaš Petrović

Fecal samples originating from 15 Eurasian griffon vultures were collected during June 2012 in the territory of special nature reservation Uvac and examined for presence of enteric bacteria Escherichia coli and Salmonella spp. Salmonellas were isolated from five samples (33.3%) and serologically typed as Salmonella enterica subsp. enterica ser. Veneziana. E. coli was isolated from four samples (26.6%). Antimicrobial susceptibility testing revealed resistance to one and more antibiotics only in E. coli isolates.


Author(s):  
Jenna A Chance ◽  
Joel M DeRouchey ◽  
Raghavendra G Amachawadi ◽  
Victor Ishengoma ◽  
Tiruvoor G Nagaraja ◽  
...  

Abstract A total of 360 weanling barrows (Line 200 ×400, DNA, Columbus NE; initially 5.6 ± 0.03 kg) were used in a 42-d study to evaluate yeast-based pre- and probiotics (Phileo by Lesaffre, Milwaukee, WI) in diets with or without pharmacological levels of Zn on growth performance and antimicrobial resistance (AMR) patterns of fecal Escherichia coli. Pens were assigned to 1 of 4 dietary treatments with 5 pigs per pen and 18 pens per treatment. Dietary treatments were arranged in a 2 × 2 factorial with main effects of yeast-based pre- and probiotics (none vs. 0.10% ActiSaf Sc 47 HR+, 0.05% SafMannan, and 0.05% NucleoSaf from d 0 to 7, then concentrations were lowered by 50% from d 7 to 21) and pharmacological levels of Zn (110 vs. 3,000 mg/kg from d 0 to 7, and 2,000 mg/kg from d 7 to 21 with added Zn provided by ZnO). All pigs were fed a common diet from d 21 to 42 post-weaning. There were no yeast ×Zn interactions or effects from yeast additives observed on any response criteria. From d 0 to 21, and 0 to 42, pigs fed pharmacological levels of Zn had increased (P &lt; 0.001) ADG and ADFI. Fecal samples were collected on d 4, 21, and 42 from the same three pigs per pen for fecal dry matter (DM) and AMR patterns of E. coli. On d 4, pigs fed pharmacological levels of Zn had greater fecal DM (P = 0.043); however, no differences were observed on d 21 or 42. E. coli was isolated from fecal samples and the microbroth dilution method was used to determine the minimal inhibitory concentrations (MIC) of E. coli isolates to 14 different antimicrobials. Isolates were categorized as either susceptible, intermediate, or resistant based on Clinical and Laboratory Standards Institute (CLSI) guidelines. The addition of pharmacological levels of Zn had a tendency (P = 0.051) to increase the MIC values of ciprofloxacin; however, these MIC values were still well under the CLSI classified resistant breakpoint for Ciprofloxacin. There was no evidence for differences (P &gt; 0.10) for yeast additives or Zn for AMR of fecal E. coli isolates to any of the remaining antibiotics. In conclusion, pharmacological levels of Zn improved ADG, ADFI, and all isolates were classified as susceptible to ciprofloxacin although the MIC of fecal E. coli tended to be increased. Thus, the short-term use of pharmacological levels of Zn did not increase antimicrobial resistance. There was no response observed from live yeast and yeast extracts for any of the growth, fecal DM, or AMR of fecal E. coli criteria.


2011 ◽  
Vol 60 (2) ◽  
pp. 216-222 ◽  
Author(s):  
Erick Amaya ◽  
Daniel Reyes ◽  
Samuel Vilchez ◽  
Margarita Paniagua ◽  
Roland Möllby ◽  
...  

In developing countries, diarrhoeal diseases are one of the major causes of death in children under 5 years of age. It is known that diarrhoeagenic Escherichia coli (DEC) is an important aetiological agent of infantile diarrhoea in Nicaragua. However, there are no recent studies on antimicrobial resistance among intestinal E. coli isolates in Nicaraguan children. The aim of the present study was to determine the antimicrobial resistance pattern in a collection of 727 intestinal E. coli isolates from the faeces of children in León, Nicaragua, between March 2005 and September 2006. All samples had been screened previously for the presence of DEC by multiplex PCR. Three hundred and ninety-five non-DEC isolates (270 from children with diarrhoea and 125 from children without diarrhoea) and 332 DEC isolates (241 from children with diarrhoea and 91 from children without diarrhoea) were analysed in this study. In general, antimicrobial resistance among the 727 intestinal E. coli isolates was high for ampicillin (60 %), trimethoprim–sulfamethoxazole (64 %) and chloramphenicol (11 %). Among individual E. coli categories, enteroaggregative E. coli isolates from children with and without diarrhoea exhibited significantly higher levels of resistance (P<0.05) to ampicillin and trimethoprim–sulfamethoxazole compared to the other E. coli categories. Resistance to ceftazidime and/or ceftriaxone and a pattern of multi-resistance was related to CTX-M-5- or CTX-M-15-producing E. coli isolates. The results suggest that E. coli isolates from Nicaraguan children have not reached the high levels of resistance to the most common antibiotics used for diarrhoea treatment as in other countries.


2016 ◽  
Vol 79 (7) ◽  
pp. 1169-1173 ◽  
Author(s):  
SONG LI ◽  
MIAOMIAO ZHAO ◽  
JUNHE LIU ◽  
YUFA ZHOU ◽  
ZENGMIN MIAO

ABSTRACT Food-producing animals carrying extended-spectrum β-lactamase–producing Escherichia coli (ESBL-EC) have posed a potential threat to human and animal health. However, information regarding ESBL-EC in the intensive broiler breeding areas of Shandong Province, People's Republic of China, is very limited. The goal of our study was to investigate the prevalence and drug resistance characteristics of ESBL-EC in healthy broilers from Shandong Province. A total of 142 ESBL-EC isolates were collected from four prefectures in Shandong Province from October 2014 to February 2015. ESBL-EC isolates were frequently detected (142 of 160 samples, 88.8%) in healthy broilers. Antibiotic susceptibility testing showed that all 142 ESBL-EC isolates were resistant to ampicillin, piperacillin, and cefazolin but were sensitive to imipenem and meropenem. All ESBL-EC isolates carried one or more of the bla genes, in which blaCTX-M, blaTEM-1, and blaSHV-5 genes were identified in 142, 106, and 5 isolates, respectively. The blaCTX-M gene includes blaCTX-M-15 (56), blaCTX-M-65 (42), blaCTX-M-55 (36), blaCTX-M-14 (21), blaCTX-M-79 (1), blaCTX-M-3 (1), blaCTX-M-123 (1), and blaCTX-M-132 (1). In addition, 17 ESBL-EC isolates cocarried the genes of the CTX-M-1 and CTX-M-9 groups. Our findings indicate that healthy broiler flocks in Shandong Province in China are an important reservoir for ESBL-EC, with blaCTX-M and blaTEM-1 being the prevalent resistance genes identified.


Sign in / Sign up

Export Citation Format

Share Document