scholarly journals Decomposition CO₂ and CO in Flow of Gases by Means of Technical Ferrogravitational Field

2021 ◽  
Vol 3 (3) ◽  
pp. 21-28
Author(s):  
Robert A. Sizov

The author's experimental studies shown that magnetic poles (magnetic charges) are real structural components of atoms and substance.   It is the magnetic poles, and not the electrons moving are direct sources of all magnetic fields in nature. The main reasons for ignoring magnetic charges in physical science are the hard conditions for their confinement in the structures of substance which is fundamentally different from the confinement of electrons, as well as the vicious electric magnetism of Maxwell (1873). True magnetic poles have been “buried alive” in physical theory under such theoretical surrogates as the magnetic moments of electrons.  The electromagnetic shells of atoms composed of electric and magnetic charges are the sources of gravitational field which is the vortex electromagnetic field and is described by vortex vector rot[E – H].  Depending on the state of vortex vectors rot[E – H]  in the composition of  gravitational fields (GF) emitted by atoms, these fields are subdivided into paragravitational (PGF) and ferrogravitational (FGF). The sources of ferrogravitational field are repelled from sources of paragravitational field, for example, from Earth.   The forces of such repulsion depend on the degree ferropolarization of gravitational field of atom - source of FGF, and the physical manifestation such repulsion is еthe effect of the ferrogravitational levitation (FGL), which discovered and investigated by the author. The FGL effect is also realized between the atoms emitting PGF and FGF in the formulations of chemical compounds.  When an external FGF acts on CO2 molecule the process ferropolarization of gravitational field of oxygen atom is realized, which should be defined as the gravito-plastic source.  In this case, the carbon atom, which is the gravito-stable mass, remains of paragravitational.              At interatomic distances <1 Å the forces of the gravito-levitation repulsion may be very significant and lead to the rupture of chemical bonds between oxygen and carbon atoms and to the disintegration of the molecule CO2. It is highly probable that the process of decomposition of CO2, similar to that described above, is carried out in the cells of leaves of green plants, which emit precisely the ferrogravitational field.  The decomposition of CO2 by FGF and the supply of oxygen to green plants is natural process that takes place in leaf cells called photosynthesis. However, photons in this process are only a stimulating factor contributing to the ferropolarization of gravitational field emitted by atoms oxygen in the composition of green plant cells.

Entropy ◽  
2021 ◽  
Vol 23 (2) ◽  
pp. 193 ◽  
Author(s):  
Giovanni Alberto Ummarino ◽  
Antonio Gallerati

We calculate the possible interaction between a superconductor and the static Earth’s gravitational fields, making use of the gravito-Maxwell formalism combined with the time-dependent Ginzburg–Landau theory. We try to estimate which are the most favorable conditions to enhance the effect, optimizing the superconductor parameters characterizing the chosen sample. We also give a qualitative comparison of the behavior of high–Tc and classical low–Tc superconductors with respect to the gravity/superfluid interplay.


2012 ◽  
Vol 27 (24) ◽  
pp. 1230023 ◽  
Author(s):  
TREVOR B. DAVIES ◽  
CHARLES H.-T. WANG ◽  
ROBERT BINGHAM ◽  
J. TITO MENDONÇA

We present a brief review on a new dynamical mechanism for a strong field effect in scalar–tensor theory. Starting with a summary of the essential features of the theory and subsequent work by several authors, we analytically investigate the parametric excitation of a scalar gravitational field in a spherically symmetric radially pulsating neutron star.


Author(s):  
Masato Akamatsu ◽  
Mitsuo Higano ◽  
Yoshio Takahashi ◽  
Hiroyuki Ozoe

Two-dimensional numerical computations were carried out for natural convection of air in a vertical cylindrical container with and without a gravitational field under a gradient of a magnetic field. The magnetic field and the magnetizing force were induced in the cylinder area and the strength and the vectors of the magnetizing force were dependent on the axial location of the electric coil. Sample computations were carried out by changing the relative orientation of an electric coil and container. In a gravitational field, air in a cylindrical container was driven by both gravitational and magnetizing forces. On the other hand, the air flow was induced by the magnetizing force even in a non-gravitational field. Flow pattern and the heat transfer rate greatly depended on the axial position of the electric coil under both gravitational and non-gravitational fields.


Author(s):  
Tony Yuan

The relative velocity between objects with finite velocity affects the reaction between them. This effect is known as general Doppler effect. The Laser Interferometer Gravitational-Wave Observatory (LIGO) discovered gravitational waves and found their speed to be equal to the speed of light c. Gravitational waves are generated following a disturbance in the gravitational field; they affect the gravitational force on an object. Just as light waves are subject to the Doppler effect, so are gravitational waves. This article explores the following research questions concerning gravitational waves: What is the spatial distribution of gravitational waves? Can the speed of a gravitational wave represent the speed of the gravitational field (the speed of the action of the gravitational field upon the object)? What is the speed of the gravitational field? Do gravitational waves caused by the revolution of the Sun affect planetary precession? Can we modify Newton&rsquo;s gravitational equation through the influence of gravitational waves?


2021 ◽  
Vol 81 (7) ◽  
Author(s):  
Zahra Haghani ◽  
Tiberiu Harko

AbstractWe generalize and unify the $$f\left( R,T\right) $$ f R , T and $$f\left( R,L_m\right) $$ f R , L m type gravity models by assuming that the gravitational Lagrangian is given by an arbitrary function of the Ricci scalar R, of the trace of the energy–momentum tensor T, and of the matter Lagrangian $$L_m$$ L m , so that $$ L_{grav}=f\left( R,L_m,T\right) $$ L grav = f R , L m , T . We obtain the gravitational field equations in the metric formalism, the equations of motion for test particles, and the energy and momentum balance equations, which follow from the covariant divergence of the energy–momentum tensor. Generally, the motion is non-geodesic, and takes place in the presence of an extra force orthogonal to the four-velocity. The Newtonian limit of the equations of motion is also investigated, and the expression of the extra acceleration is obtained for small velocities and weak gravitational fields. The generalized Poisson equation is also obtained in the Newtonian limit, and the Dolgov–Kawasaki instability is also investigated. The cosmological implications of the theory are investigated for a homogeneous, isotropic and flat Universe for two particular choices of the Lagrangian density $$f\left( R,L_m,T\right) $$ f R , L m , T of the gravitational field, with a multiplicative and additive algebraic structure in the matter couplings, respectively, and for two choices of the matter Lagrangian, by using both analytical and numerical methods.


Author(s):  
HAO ZHANG ◽  
HAI-YING LIU ◽  
CHUN-QIU ZHANG ◽  
ZHEN-ZHONG LIU ◽  
WEI WANG

Background: Compact bone mainly consists of cylindrical osteon structures. In microgravity, the change in the mechanical microenvironment of osteocytes might be the root cause of astronauts’ bone loss during space flights. Methods: A multi-scale three-dimensional (3D) fluid–solid coupling finite element model of osteons with a two-stage pore structure was developed using COMSOL software based on the natural structure of osteocytes. Gradients in gravitational fields of [Formula: see text]1, 0, 1, 2.5, and 3.7[Formula: see text]g were used to investigate the changes in the mechanical microenvironment on osteocyte structure. The difference in arteriole pulsating pressure and static compression stress caused by each gravity gradient was investigated. Results: The mechanical response of osteocytes increased with the value of g, compared with the Earth’s gravitational field. For instance, the fluid pressure of osteocytes and the von Mises stress of bone matrix near lacunae decreased by 31.3% and 99.9%, respectively, in microgravity. Under static loading, only about 16.7% of osteocytes in microgravity and 58.3% of osteocytes in the Earth’s gravitational field could reach the fluid shear stress threshold of biological reactions in cell culture experiments. Compared with the Earth’s gravitational field, the pressure gradient inside osteocytes severely decreased in microgravity. Conclusion: The mechanical microenvironment of osteocytes in microgravity might cause significant changes in the mechanical microenvironment of osteocytes, which may lead to disuse osteoporosis in astronauts.


Author(s):  
Timothy Clifton

By studying objects outside our Solar System, we can observe star systems with far greater gravitational fields. ‘Extrasolar tests of gravity’ considers stars of different sizes that have undergone gravitational collapse, including white dwarfs, neutron stars, and black holes. A black hole consists of a region of space-time enclosed by a surface called an event horizon. The gravitational field of a black hole is so strong that anything that finds its way inside the event horizon can never escape. Other star systems considered are binary pulsars and triple star systems. With the invention of even more powerful telescopes, there will be more tantalizing possibilities for testing gravity in the future.


2019 ◽  
Vol 34 (35) ◽  
pp. 1950293
Author(s):  
Pedro Sancho

We consider an unexplored aspect of the mass equivalence principle in the quantum realm, its connection with atomic stability. We show that if the gravitational mass were different from the inertial one, a Hydrogen atom placed in a constant gravitational field would become unstable in the long term. In contrast, independently of the relation between the two masses, the atom does not become ionized in a uniformly accelerated frame. This work, in the line of previous analyses studying the properties of quantum systems in gravitational fields, contributes to the extension of that program to internal variables.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 535-537 ◽  
Author(s):  
Kevin W. Lewis ◽  
Stephen Peters ◽  
Kurt Gonter ◽  
Shaunna Morrison ◽  
Nicholas Schmerr ◽  
...  

Gravimetry, the precise measurement of gravitational fields, can be used to probe the internal structure of Earth and other planets. The Curiosity rover on Mars carries accelerometers normally used for navigation and attitude determination. We have recalibrated them to isolate the signature of the changing gravitational acceleration as the rover climbs through Gale crater. The subsurface rock density is inferred from the measured decrease in gravitational field strength with elevation. The density of the sedimentary rocks in Gale crater is 1680 ± 180 kilograms per cubic meter. This value is lower than expected, indicating a high porosity and constraining maximum burial depths of the rocks over their history.


It is a consequence of general relativity that all electromagnetic and optical phenomena are influenced by a gravitational field. Indeed, the first prediction of relativity-theory, namely, the bending of light-rays when they pass near a massive body such as the sun, was a p articular application of this principle. Evidently, therefore, the classical electromagnetic theory must be rewritten in order to take account of the interaction between electromagnetism and gravitation; but beyond laying down general principles, comparatively little progress has been made hitherto in this task, the mathematical difficulties of solving definite electrical problems in a gravitational field being somewhat formidable. The subject is, however, of some interest to atomic physics; for if we assume that the atom has a massive nucleus with electrons in its immediate neighbourhood, the behaviour of such electrons (especially with regard to radiation) will be affected by the gravitational field of the nucleus. In the present paper two kinds of gravitational field are considered, namely, the field due to a single attracting centre ( i, e ., the field whose metric was discovered by Schwarzschild) and a limiting form of it. Within these gravita­tional fields we suppose electromagnetic fields to exist. Strictly speaking, the electromagnetic field has itself a gravitational effect, i.e. , it changes the metric everywhere; but this effect is in general; small, and we shall treat the ideal case in which it is ignored, so we shall suppose the metric to be simply that of the gravitational field originally postulated. The general equations of the electro­magnetic field are obtained, and particular solutions are found, which are the analogues of well-known particular solutions in the classical electromagnetic theory; notably the fields due to electrons at rest, electrostatic fields in general, and spherical electromagnetic waves. The results of the investigation are for the most part expressible only in terms of Bessel functions and certain new functions which are introduced; but in some interesting cases the electro­magnetic phenomena can be represented in term s of elementary functions, as, for instance, the electric field due to an electron in a quasi-uniform gravitational field (equations (15) and (19) below) and the spherical electromagnetic waves of short wave-length about a gravitating centre (equation (43) below).


Sign in / Sign up

Export Citation Format

Share Document