scholarly journals The theoretical-empirical technique of hydrocarbons prediction in wells sections. New aspects

2021 ◽  
Vol 43 (1) ◽  
pp. 160-180
Author(s):  
L. Skakalska ◽  
A. Nazarevych ◽  
V. Kosarchyn

We present the developed theoretical-empirical technique for predicting of rocks’ oil-and-gas bearing in wells sections according to acoustic logging (AL) and core research (CR) and its variants by using data of other loggings and also the results of testing them on wells sections data in the Western oil and gas bearing region of Ukraine (WOGR). The mathematical apparatus of the created technique is based on a mathematical model of solid porous rock, empirical relationships between elastic and reservoir characteristics of rocks and acoustic logging data for specific studied wells. The key parameter in the calculations is the rock compressibility. Determination of the porosity of rocks and prediction of the type of pore filler (water, oil, gas) is implemented by comparing the results of calculating the velocities using theoretical and constructed empirical relationships with the actual data of the AL, by the parameter of compressibility of rocks, by the density of the pore filler fluid. Additional versions of the technique have been developed based on correlation dependences and data from other logging methods — gamma-ray logging (GL), electric logging (EL/SP), offset method and seismic logging (SL). They are used in case of absence of AL data for the studied wells or for the intervals of their sections, and also for improving the reliability of prediction the oil and gas content of these sections. The software for the implementation of the technique was developed in Fortran, C# and Excel software environments. The technique was tested on the data of wells of a number of structures of the WOGR of Ukraine (Lishchyns’ka, Buchats’ka, Ludyns’ka, Zaluzhans’ka, Zarichnyans’ka and Nyklovyts’ka).The technique ensures reliable prediction of petrophysical characteristics, porosity and oil-gas-water saturation of rock layers of different thicknesses (including thin layers — from 0.1—0.2 m) in well sections. For this, in addition to the data of the general parametric base of the WOGR reservoir rocks, the specially constructed refined empirical relations for various specific types and subtypes of the WOGR reservoir rocks are used, they are based on the results of analysis of petrophysical characteristics of those rocks.

2017 ◽  
pp. 34-43
Author(s):  
E. E. Oksenoyd ◽  
V. A. Volkov ◽  
E. V. Oleynik ◽  
G. P. Myasnikova

Based on pyrolytic data (3 995 samples from 208 wells) organic matter types of Bazhenov Formation are identified in the central part of Western Siberian basin. Zones of kerogen types I, II, III and mixed I-II and II-III are mapped. Content of sulfur, paraffins, resins and asphaltenes, viscosity, density, temperature and gas content in oils from Upper Jurassic and Lower Cretaceous sediments (3 806 oil pools) are mapped. Oil gradations are identified and distributed. The alternative model of zones of kerogen II and IIS types is presented. The established distributions of organic matter types can be used in basin modeling and in assessment of oil-and-gas bearing prospects.


2015 ◽  
pp. 9-15
Author(s):  
A. I. Diyakonov ◽  
L. V. Parmuzina ◽  
S. V. Kochetov ◽  
A. Yu. Malikova

It is shown that the evolutionary-catagenetic model for calculating the initial potential hydrocarbon resources can serve as a scientific basis for the separate quantitative prediction of areas of oil-and-gas content. In this case retrospectively evaluated are the scales of generation and accumulation of hydrocarbons in the source rocks during catagenetic evolution of sedimentary basin. The authors propose a method, the results of evaluation of generation and accumulation scales and initial potential oil and gas resources for major oil-and-gas bearing complexes of Dzhebol stage.


2014 ◽  
Vol 962-965 ◽  
pp. 213-216
Author(s):  
Guo Ping Jiang

In this paper, four general directions are described to make evaluations and their resource potential; those are coal structure and coal level, gas content of deep coalbed, the coalbed thickness and distribution and the buried depth of coalbed. Coalfields of the study area are mainly Permian and Carboniferous coal seam of Shanxi Formation coal and Benxi group 11 # coal, coal seam depth 1370-1812m. No. 3 coal-seam average layer thickness of 1.6 m, the monolayer most 2 m thick; No. 11 coal-seam in the average layer thickness of 3 m, single-layer thickness of 4.5 m. Predict the amount of coal resources of 17.3 one hundred million t. Predict coal-bed methane resources of 27.68 billion cubic reserve abundance of 104 million square / km2 in. The exploration results show that this region has good development prospects.


2013 ◽  
Vol 650 ◽  
pp. 664-666
Author(s):  
Lei Zhang ◽  
Guo Ming Liu

A12 oil and gas reservoirs in L Oilfield Carboniferous carbonate rocks of oil and gas bearing system, saturated with the gas cap and edge water and bottom water reservoir. The A12 oil and gas reservoir structure the relief of the dome-shaped anticline, oil, gas and water distribution controlled by structure, the gas interface -2785 meters above sea level, the oil-water interface altitude range -2940 ~-2980m, average-2960m. Average reservoir thickness of 23m, with a certain amount of dissolved gas drive and gas cap gas drive energy, but not very active edge and bottom water, gas cap drive index.


2021 ◽  
pp. 61-74
Author(s):  
Asya A. SHCHEGOLKOVA ◽  
◽  
◽  

The Yamal oil and gas province (OGP) is strategically important for the Russian gas industry. In the coming decade, gas production in Yamal is expected to grow to 180–200 billion cubic meters per year. The main goal of the article is to solve a scientific problem consisting in the study of the spatial organization of the development of gas resources, determination of the rational structure of reproduction of natural gas reserves in the Yamal oil-gas-bearing region in the context of the modernization of the Arctic gas industry complex. The article assessed the gas resources of Yamal, revealed trends in the economic development of natural gas fields, presented the characteristics of investment projects based on the fields being developed. An analysis was carried out that made it possible to differentiate the deposits by the degree of their prospects, and a strategy for expanding the hydrocarbon potential of Yamal was determined. It was revealed that the main areas of production in the Yamal oil-gas-bearing region are associated with the development of deposits with a high level of Cenomanian deposits. Such deposits are characterized by a higher increase in the capitalization and profitability of investment projects in real time compared to fields located in the northern and far eastern seas, including on the shelf of the Kara Sea. It was concluded that the strategy for the reproduction of hydrocarbon potential will be aimed at conducting prospecting and exploration in order to transfer forecast resources to industrial reserves of natural gas. The study applies a general scientific methodology providing for systemic and comprehensive approaches to justify the spatial organisation of gas resources development in the Yamal oil and gas bearing region. A significant body of factual material on the state of free gas and condensate reserves in Yamal has been analyzed. The results of the research were obtained with the use of comparative-analytical, statistical methods of economic analysis.


Author(s):  
O.P. Abramova ◽  
A.V. Goreva ◽  
R.R. Gumerova

The features of the chemical composition of formation waters of the Upper Permian, Lower and Middle Triassic aquifers within individual structures of the Malozemelsk-Kolguev monocline of the Timan-Pechora oil and gas bearing basin are examined. It is shown that the aquifers that, despite their remoteness from the recharge areas, had experienced repeated processes of dipping and uplifting of the territory, preserved the infiltration waters, but significantly transformed ones. To identify their genetic profile and determine the relationship with the processes of catagenetic changes, hydrochemical coefficients and indices of water saturation of calcium carbonate and calcium sulfate are calculated. It is established that the examined infiltration waters are characterized by high aggressiveness, dissolution ability, leaching and removal of main minerals. It is pointed out that the consequence of these processes is the formation of secondary void space and the creation of high capacitive and filtration properties of rocks. The universality of geochemical interaction between water and rocks in thermodynamically open geological systems is emphasized and it is confirmed by individual geological examples that the heterogeneity of the hydrochemical field can act as a cause of screening zones of oil and gas accumulation, as well as provide appropriate conditions for localization of hydrocarbon fluids.


2021 ◽  
Author(s):  
Marat Rafailevich Dulkarnaev ◽  
Yuri Alexeyevich Kotenev ◽  
Shamil Khanifovich Sultanov ◽  
Alexander Viacheslavovich Chibisov ◽  
Daria Yurievna Chudinova ◽  
...  

In pursuit of efficient oil and gas field development, including hard-to-recover reserves, the key objective is to develop and provide the rationale for oil recovery improvement recommendations. This paper presents the results of the use of the workflow process for optimized field development at two field clusters of the Yuzhno-Vyintoiskoye field using geological and reservoir modelling and dynamic marker-based flow production surveillance in producing horizontal wells. The target reservoir of the Yuzhno-Vyntoiskoye deposit is represented by a series of wedge-shaped Neocomian sandstones. Sand bodies typically have a complex geological structure, lateral continuity and a complex distribution of reservoir rocks. Reservoir beds are characterised by low thickness and permeability. The pay zone of the section is a highly heterogeneous formation, which is manifested through vertical variability of the lithological type of reservoir rocks, lithological substitutions, and the high clay content of reservoirs. The target reservoir of the Yuzhno-Vyintoiskoye field is marked by an extensive water-oil zone with highly variable water saturation. According to paleogeographic data, the reservoir was formed in shallow marine settings. Sand deposits are represented by regressive cyclites that are typical for the progressing coastal shallow water (Dulkarnaev et al., 2020). Currently, the reservoir is in production increase cycle. That is why an integrated approach is used in this work to provide a further rationale and creation of the starting points of the reservoir pressure maintenance system impact at new drilling fields to improve oil recovery and secure sustainable oil production and the reserve development rate under high uncertainty.


Author(s):  
Janvier Domra Kana ◽  
Ahmad Diab Ahmad ◽  
Daniel Hervé Gouet ◽  
Xavier Djimhoudouel ◽  
Serge Parfait Koah Na Lebogo

AbstractThe present work deals with an interpretation of well log data (gamma ray (GR), resistivity, density, and neutron) from four wells, namely P-1, P-2, P-3 and P-4 in the study area of the Rio Del Rey basin. The well logs analysis indicates five potential sandstone reservoirs at the P-1, two at the P-2, four at the P-3 and six at the P-4. The neutron–density-GR logs highlight the sandstone gas reservoir characterized by high resistivity and crossover between neutron density. The neutron–density-GR cross-plot confirms the presence of sandstone containing hydrocarbons by a displacement of the cloud of points, from low to medium GR values, from the sandstone line to the left. Petrophysical parameters exhibit the value 12–41% for a volume of shale, 15–34% for effective porosity, 29–278 mD for permeability and 3–63% for water saturation. The three potential hydrocarbon reservoir saturation ranges from 22 to 45%. The study will contribute to future offshore oil and gas exploration and development in the Rio Del Rey basin, based on the geological and geophysical characteristics of the reservoirs delineated.


Sign in / Sign up

Export Citation Format

Share Document