scholarly journals Bioinformatic characterization of the Transmembrane protein95 gene (TMEM95) in Murrah buffalo (Bubalus bubalis)

2021 ◽  
Vol 91 (1) ◽  
pp. 11-18
Author(s):  
Sampathirao Shireesha ◽  
◽  
Krovvidi Sudhakar ◽  
Regula Vinoo ◽  
Chappidi V. Seshaiah ◽  
...  

Idiopathic male subfertility is often a neglected phenotype with respect to male fertility in bovines. The gene TMEM95 plays a crucial role in idiopathic male subfertility in cattle. Using the DNA sequence information from cattle TMEM95 gene, we characterized the gene in Murrah buffalo. A total of 2.6 kb of a fragment orthologous to cattle was sequenced from Murrah buffalo and Gir cattle. A 2 bp deletion is present in Murrah buffalo, causing missense mutations in three isoforms that are present in cattle. The functional effects of various non-synonymous mutations were predicted using the SNAP2 program, and showed that the non-synonymous SNPs could affect the protein function. Functional motif annotation revealed the presence of a Casein kinase II phosphorylation site that plays an important role in sperm morphology, Leucine zipper pattern, N-myristoylation site, protein kinase C phosphorylation site, CHRD domain profile, N-glycosylation site and HIT zinc finger motifs in cattle. The HIT ZF motif is absent in all of the functional isoforms in buffalo. The results together suggest that the subfertility gene TMEM95 in cattle and buffalo must have evolved with different functions but plays a role in male fertility as in other mammals.

2021 ◽  
Vol 41 (01) ◽  
pp. 19-24
Author(s):  
FengPing Guo

Pulmonary vascular remodeling (PVR) is the main characteristic lesion of ascites syndrome (AS) in broilers. JAZF1 plays an important role in PVR, but there is no study on its protein function and structure. In this study, the physical and chemical properties, hydrophilicity/hydrophobicity and transmembrane domain, phosphorylation site and glycosylation site, subcellular localization and signal peptide, secondary and tertiary structure, antigen peptide and conserved domain and phylogenetic relationship of JAZF1 protein were predicted online by bioinformatics tools. The results showed that the number of amino acids of JAZF1 was 243aa, the theoretical isoelectric point was 8.63, the instability index was 58.1, and the average coefficient of hydrophilicity was -0.674. It was found to be a hydrophilic protein having 35 phosphorylation sites and a N-glycosylation site with no transmembrane domain. The protein is expressed in the nucleus, there is no signal peptide distribution in the whole sequence and the secondary structure is mainly composed of random coil and α- helix. There were 7 B cell epitopes, 7 conserved domains and compared with other birds, JAZF1 is 95.61% similar. In summary, from the analysis we came to conclude that the amino acid sequence 64-80aa, 91-108aa, 136-151aa and 179-187aa can be selected as antigen sites and among which 136-151aa may be the best. This study lays a good foundation for follow-up experiments, which then provides powerful conditions for pathological detection of pulmonary vascular remodeling and gene drug therapy of ascites syndrome in broilers.


2021 ◽  
Vol 9 (2) ◽  
pp. 388
Author(s):  
Marta Hernández-García ◽  
María García-Castillo ◽  
Sergio García-Fernández ◽  
Diego López-Mendoza ◽  
Jazmín Díaz-Regañón ◽  
...  

CrpP enzymes have been recently described as a novel ciprofloxacin-resistance mechanism. We investigated by whole genome sequencing the presence of crpP-genes and other mechanisms involved in quinolone resistance in MDR/XDR-Pseudomonas aeruginosa isolates (n = 55) with both ceftolozane-tazobactam susceptible or resistant profiles recovered from intensive care unit patients during the STEP (Portugal) and SUPERIOR (Spain) surveillance studies. Ciprofloxacin resistance was associated with mutations in the gyrA and parC genes. Additionally, plasmid-mediated genes (qnrS2 and aac(6′)-Ib-cr) were eventually detected. Ten chromosomal crpP-like genes contained in related pathogenicity genomic islands and 6 different CrpP (CrpP1-CrpP6) proteins were found in 65% (36/55) of the isolates. Dissemination of CrpP variants was observed among non-related clones of both countries, including the CC175 (Spain) high-risk clone and CC348 (Portugal) clone. Interestingly, 5 of 6 variants (CrpP1-CrpP5) carried missense mutations in an amino acid position (Gly7) previously defined as essential conferring ciprofloxacin resistance, and decreased ciprofloxacin susceptibility was only associated with the novel CrpP6 protein. In our collection, ciprofloxacin resistance was mainly due to chromosomal mutations in the gyrA and parC genes. However, crpP genes carrying mutations essential for protein function (G7, I26) and associated with a restored ciprofloxacin susceptibility were predominant. Despite the presence of crpP genes is not always associated with ciprofloxacin resistance, the risk of emergence of novel CrpP variants with a higher ability to affect quinolones is increasing. Furthermore, the spread of crpP genes in highly mobilizable genomic islands among related and non-related P. aeruginosa clones alert the dispersion of MDR pathogens in hospital settings.


2008 ◽  
Vol 22 (8) ◽  
pp. 1754-1766 ◽  
Author(s):  
Weiwei Chen ◽  
Thoa Dang ◽  
Raymond D. Blind ◽  
Zhen Wang ◽  
Claudio N. Cavasotto ◽  
...  

Abstract The glucocorticoid receptor (GR) is phosphorylated at multiple sites within its N terminus (S203, S211, S226), yet the role of phosphorylation in receptor function is not understood. Using a range of agonists and GR phosphorylation site-specific antibodies, we demonstrated that GR transcriptional activation is greatest when the relative phosphorylation of S211 exceeds that of S226. Consistent with this finding, a replacement of S226 with an alanine enhances GR transcriptional response. Using a battery of compounds that perturb different signaling pathways, we found that BAPTA-AM, a chelator of intracellular divalent cations, and curcumin, a natural product with antiinflammatory properties, reduced hormone-dependent phosphorylation at S211. This change in GR phosphorylation was associated with its decreased nuclear retention and transcriptional activation. Molecular modeling suggests that GR S211 phosphorylation promotes a conformational change, which exposes a novel surface potentially facilitating cofactor interaction. Indeed, S211 phosphorylation enhances GR interaction with MED14 (vitamin D receptor interacting protein 150). Interestingly, in U2OS cells expressing a nonphosphorylated GR mutant S211A, the expression of IGF-binding protein 1 and interferon regulatory factor 8, both MED14-dependent GR target genes, was reduced relative to cells expressing wild-type receptor across a broad range of hormone concentrations. In contrast, the induction of glucocorticoid-induced leucine zipper, a MED14-independent GR target, was similar in S211A- and wild-type GR-expressing cells at high hormone levels, but was reduced in S211A cells at low hormone concentrations, suggesting a link between GR phosphorylation, MED14 involvement, and receptor occupancy. Phosphorylation also affected the magnitude of repression by GR in a gene-selective manner. Thus, GR phosphorylation at S211 and S226 determines GR transcriptional response by modifying cofactor interaction. Furthermore, the effect of GR S211 phosphorylation is gene specific and, in some cases, dependent upon the amount of activated receptor.


1993 ◽  
Vol 13 (10) ◽  
pp. 6012-6023 ◽  
Author(s):  
R Cafferkey ◽  
P R Young ◽  
M M McLaughlin ◽  
D J Bergsma ◽  
Y Koltin ◽  
...  

Rapamycin is a macrolide antifungal agent that exhibits potent immunosuppressive properties. In Saccharomyces cerevisiae, rapamycin sensitivity is mediated by a specific cytoplasmic receptor which is a homolog of human FKBP12 (hFKBP12). Deletion of the gene for yeast FKBP12 (RBP1) results in recessive drug resistance, and expression of hFKBP12 restores rapamycin sensitivity. These data support the idea that FKBP12 and rapamycin form a toxic complex that corrupts the function of other cellular proteins. To identify such proteins, we isolated dominant rapamycin-resistant mutants both in wild-type haploid and diploid cells and in haploid rbp1::URA3 cells engineered to express hFKBP12. Genetic analysis indicated that the dominant mutations are nonallelic to mutations in RBP1 and define two genes, designated DRR1 and DRR2 (for dominant rapamycin resistance). Mutant copies of DRR1 and DRR2 were cloned from genomic YCp50 libraries by their ability to confer drug resistance in wild-type cells. DNA sequence analysis of a mutant drr1 allele revealed a long open reading frame predicting a novel 2470-amino-acid protein with several motifs suggesting an involvement in intracellular signal transduction, including a leucine zipper near the N terminus, two putative DNA-binding sequences, and a domain that exhibits significant sequence similarity to the 110-kDa catalytic subunit of both yeast (VPS34) and bovine phosphatidylinositol 3-kinases. Genomic disruption of DRR1 in a mutant haploid strain restored drug sensitivity and demonstrated that the gene encodes a nonessential function. DNA sequence comparison of seven independent drr1dom alleles identified single base pair substitutions in the same codon within the phosphatidylinositol 3-kinase domain, resulting in a change of Ser-1972 to Arg or Asn. We conclude either that DRR1 (alone or in combination with DRR2) acts as a target of FKBP12-rapamycin complexes or that a missense mutation in DRR1 allows it to compensate for the function of the normal drug target.


2012 ◽  
Vol 18 (2) ◽  
pp. 60-62
Author(s):  
MC Gonsales ◽  
P Preto ◽  
MA Montenegro ◽  
MM Guerreiro ◽  
I Lopes-Cendes

OBJECTIVES: The purpose of this study was to advance the knowledge on the clinical use of SCN1A testing for severe epilepsies within the spectrum of generalized epilepsy with febrile seizures plus by performing genetic screening in patients with Dravet and Doose syndromes and establishing genotype-phenotype correlations. METHODS: Mutation screening in SCN1A was performed in 15 patients with Dravet syndrome and 13 with Doose syndrome. Eight prediction algorithms were used to analyze the impact of the mutations in putative protein function. Furthermore, all SCN1A mutations previously published were compiled and analyzed. In addition, Multiplex Ligation-Dependent Probe Amplification (MLPA) technique was used to detect possible copy number variations within SCN1A. RESULTS: Twelve mutations were identified in patients with Dravet syndrome, while patients with Doose syndrome showed no mutations. Our results show that the most common type of mutation found is missense, and that they are mostly located in the pore region and the N- and C-terminal of the protein. No copy number variants in SCN1A were identified in our cohort. CONCLUSIONS: SCN1A testing is clinically useful for patients with Dravet syndrome, but not for those with Doose syndrome, since both syndromes do not seem to share the same genetic basis. Our results indicate that indeed missense mutations can cause severe phenotypes depending on its location and the type of amino-acid substitution. Moreover, our strategy for predicting deleterious effect of mutations using multiple computation algorithms was efficient for most of the mutations identified.


F1000Research ◽  
2020 ◽  
Vol 8 ◽  
pp. 613
Author(s):  
Ejaz Butt ◽  
Sabra Alyami ◽  
Tahani Nageeti ◽  
Muhammad Saeed ◽  
Khalid AlQuthami ◽  
...  

Background: Ependymomas are glial tumors derived from differentiated ependymal cells. In contrast to other types of brain tumors, histological grading is not a good prognostic marker for these tumors. In order to determine genomic changes in an anaplastic ependymoma, we analyzed its mutation patterns by next generation sequencing (NGS). Methods:  Tumor DNA was sequenced using an Ion PI v3 chip on Ion Proton instrument and the data were analyzed by Ion Reporter 5.6. Results: NGS analysis identified 19 variants, of which four were previously reported missense variants; c.395G>A in IDH1, c.1173A>G in PIK3CA, c.1416A>T in KDR and c.215C>G in TP53. The frequencies of the three missense mutations (PIK3CA c.1173A>G, KDR c.1416A>T, TP53, c.215C>G) were high, suggesting that these are germline variants, whereas the IDH1 variant frequency was low (4.81%). However, based on its FATHMM score of 0.94, only the IDH1 variant is pathogenic; other variants TP53, PIK3CA and KDR had FATHMM scores of 0.22, 0.56 and 0.07, respectively. Eight synonymous mutations were found in FGFR3, PDGFRA, EGFR, RET, HRAS, FLT3, APC and SMAD4 genes. The mutation in FLT3 p.(Val592Val) was the only novel variant found. Additionally, two known intronic variants in KDR were found and intronic variants were also found in ERBB4 and PIK3CA. A known splice site mutation at an acceptor site in FLT3, a 3’-UTR variant in the CSF1R gene and a 5’_UTR variant in the SMARCB1 gene were also identified. The p-values were below 0.00001 for all variants and the average coverage for all variants was around 2000x. Conclusions: In this grade III ependymoma, one novel synonymous mutation and one deleterious missense mutation is reported. Many of the variants reported here have not been detected in ependymal tumors by NGS analysis previously and we therefore report these variants in brain tissue for the first time.


2017 ◽  
Author(s):  
Jungeui Hong ◽  
Nathan Brandt ◽  
Ally Yang ◽  
Tim Hughes ◽  
David Gresham

Understanding the molecular basis of gene expression evolution is a central problem in evolutionary biology. However, connecting changes in gene expression to increased fitness, and identifying the functional basis of those changes, remains challenging. To study adaptive evolution of gene expression in real time, we performed long term experimental evolution (LTEE) of Saccharomyces cerevisiae (budding yeast) in ammonium-limited chemostats. Following several hundred generations of continuous selection we found significant divergence of nitrogen-responsive gene expression in lineages with increased fitness. In multiple independent lineages we found repeated selection for non-synonymous mutations in the zinc finger DNA binding domain of the activating transcription factor (TF), GAT1, that operates within incoherent feedforward loops to control expression of the nitrogen catabolite repression (NCR) regulon. Missense mutations in the DNA binding domain of GAT1 reduce its binding affinity for the GATAA consensus sequence in a promoter-specific manner, resulting in increased expression of ammonium permease genes via both direct and indirect effects, thereby conferring increased fitness. We find that altered transcriptional output of the NCR regulon results in antagonistic pleiotropy in alternate environments and that the DNA binding domain of GAT1 is subject to purifying selection in natural populations. Our study shows that adaptive evolution of gene expression can entail tuning expression output by quantitative changes in TF binding affinities while maintaining the overall topology of a gene regulatory network.


2019 ◽  
Author(s):  
Pooja Gopal ◽  
Jickky Sarathy ◽  
Michelle Yee ◽  
Priya Ragunathan ◽  
Joon Shin ◽  
...  

AbstractThe introduction of pyrazinamide (PZA) in the tuberculosis drug regimen shortened treatment from 12 to 6 months 1. PZA is a prodrug that is activated by a Mycobacterium tuberculosis (Mtb) amidase to release its bioactive component pyrazinoic acid (POA) 2. Aspartate decarboxylase PanD, a proenzyme activated by autocatalytic cleavage (Supplementary Fig. 1A, 3) and required for Coenzyme A (CoA) biosynthesis, emerged as a target of POA 4-7. In vitro and in vivo screening to isolate spontaneous POA-resistant Mtb mutants identified missense mutations in either panD or the unfoldase clpC1, encoding a component of the caseinolytic protease ClpC1-ClpP 4,6-9. Overexpression and binding studies of PanD or ClpC1 pointed to PanD as the direct target of POA whereas clpC1 mutations appeared to indirectly cause resistance 4,5,7,9,10. Indeed, supplementing growth media with CoA precursors downstream of the PanD catalyzed step conferred POA resistance 4,7,11. Metabolomic analyses and biophysical studies using recombinant proteins confirmed targeting of PanD by POA 5. However, the exact molecular mechanism of PanD inhibition by POA remained unknown. While most drugs act by inhibiting protein function upon target binding, we show here that POA is not a bona fide enzyme inhibitor. Rather, POA binding to PanD triggers degradation of the protein by ClpC1-ClpP. Thus, the old tuberculosis drug PZA promotes degradation of its target. While novel for an antibacterial, drug-induced target degradation has recently emerged as a strategy in drug discovery across disease indications. Our findings provide the basis for the rational discovery of next generation PZA.


2017 ◽  
Vol 312 (6) ◽  
pp. G580-G591 ◽  
Author(s):  
Tamara Stelzl ◽  
Kerstin E. Geillinger-Kästle ◽  
Jürgen Stolz ◽  
Hannelore Daniel

Despite the fact that many membrane proteins carry extracellular glycans, little is known about whether the glycan chains also affect protein function. We recently demonstrated that the proton-coupled oligopeptide transporter 1 (PEPT1) in the intestine is glycosylated at six asparagine residues (N50, N406, N439, N510, N515, and N532). Mutagenesis-induced disruption of the individual N-glycosylation site N50, which is highly conserved among mammals, was detected to significantly enhance the PEPT1-mediated inward transport of peptides. Here, we show that for the murine protein the inhibition of glycosylation at sequon N50 by substituting N50 with glutamine, lysine, or cysteine or by replacing S52 with alanine equally altered PEPT1 transport kinetics in oocytes. Furthermore, we provide evidence that the uptake of [14C]glycyl-sarcosine in immortalized murine small intestinal (MODE-K) or colonic epithelial (PTK-6) cells stably expressing the PEPT1 transporter N50Q is also significantly increased relative to the wild-type protein. By using electrophysiological recordings and tracer flux studies, we further demonstrate that the rise in transport velocity observed for PEPT1 N50Q is bidirectional. In line with these findings, we show that attachment of biotin derivatives, comparable in weight with two to four monosaccharides, to the PEPT1 N50C transporter slows down the transport velocity. In addition, our experiments provide strong evidence that glycosylation of PEPT1 confers resistance against proteolytic cleavage by proteinase K, whereas a remarkable intrinsic stability against trypsin, even in the absence of N-linked glycans, was detected. NEW & NOTEWORTHY This study highlights the role of N50-linked glycans in modulating the bidirectional transport activity of the murine peptide transporter PEPT1. Electrophysiological and tracer flux measurements in Xenopus oocytes have shown that removal of the N50 glycans increases the maximal peptide transport rate in the inward and outward directions. This effect could be largely reversed by replacement of N50 glycans with structurally dissimilar biotin derivatives. In addition, N-glycans were detected to stabilize PEPT1 against proteolytic cleavage.


Development ◽  
2000 ◽  
Vol 127 (18) ◽  
pp. 4023-4037 ◽  
Author(s):  
A. Veraksa ◽  
N. McGinnis ◽  
X. Li ◽  
J. Mohler ◽  
W. McGinnis

The basic-leucine zipper protein Cap ‘n’ collar B (CncB) suppresses the segmental identity function of the Hox gene Deformed (Dfd) in the mandibular segment of Drosophila embryos. CncB is also required for proper development of intercalary, labral and mandibular structures. In this study, we provide evidence that the CncB-mediated suppression of Dfd requires the Drosophila homolog of the mammalian small Maf proteins, Maf-S, and that the suppression occurs even in the presence of high amounts of Dfd protein. Interestingly, the CncB/Maf-S suppressive effect can be partially reversed by overexpression of Homothorax (Hth), suggesting that Hth and Extradenticle proteins antagonize the effects of CncB/Maf-S on Dfd function in the mandibular segment. In embryos, multimers of simple CncB/Maf-S heterodimer sites are transcriptionally activated in response to CncB, and in tissue culture cells the amino-terminal domain of CncB acts as a strong transcriptional activation domain. There are no good matches to CncB/Maf binding consensus sites in the known elements that are activated in response to Dfd and repressed in a CncB-dependent fashion. This suggests that some of the suppressive effect of CncB/Maf-S proteins on Dfd protein function might be exerted indirectly, while some may be exerted by direct binding to as yet uncharacterized Dfd response elements. We also show that ectopic CncB is sufficient to transform ventral epidermis in the trunk into repetitive arrays of ventral pharynx. We compare the functions of CncB to those of its vertebrate and invertebrate homologs, p45 NF-E2, Nrf and Skn-1 proteins, and suggest that the pharynx selector function of CncB is highly conserved on some branches of the evolutionary tree.


Sign in / Sign up

Export Citation Format

Share Document