scholarly journals Analisis karakteristik aerodinamika telescopic wing dengan konfigurasi sayap flying wing dan glider menggunakan metode pendekatan simulasi CFD

2021 ◽  
Vol 10 (1) ◽  
Author(s):  
Azhim Asyratul Azmi ◽  
Satriawan Dini Hariyanto ◽  
Arif Hidayat

A telescopic wing is a shape-changing method of the aircraft wing known as the morphing wing system. Wingspan extends capability on telescopic wing increasing the aspect ratio to get a high lift force. The telescopic wing on a flying wing configuration as an external wing and glider wing as an internal wing can be used to increase the coefficient lift (CL) when carrying out special missions. The aerodynamic characteristics using the Computational Fluid Dynamic (CFD) simulation approach is presented. For the 40% internal wingspan, the highest CL increment was 12.9% at a 10o angle of attack. For the 50% internal wingspan, the highest CL increment was 14.9% at a 10o angle of attack. on the 40% internal wing, the highest coefficient drag (CD) increment was 4.7%, and the largest CD increment on 50% internal was 9.5% at the angle of attack of 20o. The pressure distribution along the internal wingspan was uneven from an angle of attack of 15o due to the wing tip vortices of the external wing. Streamline pattern shown a bubble separation from the leading edge at an internal wing root by external wing tip vortices.Keywords: Morphing wing, telescopic wing, flying wing, glider

2017 ◽  
Vol 15 (1) ◽  
pp. 45
Author(s):  
Awalu Romadhon ◽  
Dana Herdiana

LSU-05 aircraft is one of the unmanned aerial vehicles (UAV), which is being developed by the Aeronautics Technology Center of LAPAN, whose mission is for research, observation, patrol, border surveillance, and investigation of natural disasters. This study aims to determine the effect of vortex generators on the aerodynamic characteristics of the LSU-05 Unmanned Aircraft wing. The method used is a numerical analysis with CFD simulation for predicting aerodynamic characteristics and flow phenomena that occur. The models used are the aircraft wing of the LSU-05 without vortex generator and with vortex generator designed with CATIA software. The simulation is using ANSYS Fluent software to determine changes in the aerodynamic characteristics of the wing after the addition of vortex generators such as the lift coefficient and drag coefficient. The results of the addition of vortex generator on LSU-05 wings are the increasing value of the maximum lift coefficient of the wing which becomes 1,34840 from 1,26450, it increases 0,0839 (6.63%) point, the increasing value of the drag coefficient on the angle of attack from -9⁰ to 11⁰, the decreasing value of the drag coefficient on the angle of attack 12⁰ up to 15⁰ and the increasing stall angle of wing from 11⁰ to 14⁰ or increased by 3⁰ (27,7%). AbstrakPesawat LSU-05 adalah salah satu pesawat tanpa awak (UAV) yang sedang dikembangkan oleh Pusat Teknologi Penerbangan LAPAN, yang mempunyai misi untuk kegiatan penelitian, observasi, patroli, pengawasan perbatasan wilayah, dan investigasi bencana alam. Penelitian ini bertujuan untuk mengetahui pengaruh penambahan vortex generator terhadap karakteristik aerodinamika dari sayap Pesawat Tanpa Awak LSU-05. Metode yang digunakan adalah analisis numerik dengan simulasi CFD untuk memprediksi karakteristik aerodinamika dan fenomena aliran yang terjadi. Model yang digunakan adalah sayap pesawat LSU-05 tanpa vortex generator dan dengan vortex generator yang didesain dengan software CATIA. Simulasi menggunakan software ANSYS Fluent untuk mengetahui perubahan karakteristik aerodinamika sayap setelah penambahan vortex generator seperti koefisien lift dan koefisien drag. Hasil yang diperoleh dari penelitian penambahan vortex generator pada sayap Pesawat LSU-05 adalah peningkatan nilai koefisien lift maksimum sayap dari 1,26450 menjadi 1,34840 atau naik sebesar 0,0839 (6,63%), peningkatan nilai koefisien drag pada sudut serang -9⁰ s/d 11⁰, penurunan nilai koefisien drag pada sudut serang 12⁰ s.d 15⁰ dan peningkatan sudut stall sayap dari 11⁰ menjadi 14⁰ atau naik sebesar 3⁰ (27,7 %).


2017 ◽  
Vol 121 (1245) ◽  
pp. 1711-1732 ◽  
Author(s):  
R. Kalimuthu ◽  
R. C. Mehta ◽  
E. Rathakrishnan

ABSTRACTA forward spike attached to a blunt body significantly alters its flow field characteristics and influences aerodynamic characteristics at hypersonic flow due to formation of separated flow and re-circulation region around the spiked body. An experimental investigation was performed to measure aerodynamic forces for spikes blunt bodies with a conical, hemispherical and flat-face spike at Mach 6 and at an angle-of-attack range from 0° to 8° and length-to-diameterL/Dratio of spike varies from 0.5 to 2.0, whereLis the length of the spike andDis diameter of blunt body. The shape of the leading edge of the spiked blunt body reveals different types of flow field features in the formation of a shock wave, shear layer, flow separation, re-circulation region and re-attachment shock. They are analysed with the help of schlieren pictures. The shock distance ahead of the hemisphere and the flat-face spike is compared with the analytical solution and is showing satisfactory agreement with the schlieren pictures. The influence of geometrical parameters of the spike, the shape of the spike tip and angle-of-attack on the aerodynamic coefficients are investigated by measuring aerodynamic forces in a hypersonic wind tunnel. It is found that a maximum reduction of drag of about 77% was found for hemisphere spike ofL/D= 2.0 at zero angle-of-attack. Consideration for compensation of increased pitching moment is required to stabilise the aerodynamic forces.


2014 ◽  
Vol 703 ◽  
pp. 370-375 ◽  
Author(s):  
Jie Min Li ◽  
Guang Lin He ◽  
Hao Yang Guo

This study researched the aerodynamic characteristics of a two-dimensional trajectory correction fuze used for the common artillery ammunition, which increases the targeting accuracy by decreasing the circular error probability. The correction fuze has a pair of fixed canard and a pair of steering canards for roll control and guidance. In this study, computational fluid dynamic (CFD) simulation is performed to study the aerodynamic characteristics of the trajectory correction fuze. The primary purpose of this performance was to predict the aerodynamic coefficients and flow field over a spin-stabilized projectile with the correction fuze. Calculation covered from-10 degrees to 10 degrees steering canards deflection over speed range from Mach 0.6 to 3. The results showed the variation law in the rotary moment of correction module and the control forces of the steering canards with the Mach varying, providing aerodynamic reference for the research of trajectory correction projectiles in the future.


2014 ◽  
Vol 136 (5) ◽  
Author(s):  
Saeed Jamei ◽  
Adi Maimun Abdul Malek ◽  
Shuhaimi Mansor ◽  
Nor Azwadi Che Sidik ◽  
Agoes Priyanto

Wing configuration is a parameter that affects the performance of wing-in-ground effect (WIG) craft. In this study, the aerodynamic characteristics of a new compound wing were investigated during ground effect. The compound wing was divided into three parts with a rectangular wing in the middle and two reverse taper wings with anhedral angle at the sides. The sectional profile of the wing model is NACA6409. The experiments on the compound wing and the rectangular wing were carried to examine different ground clearances, angles of attack, and Reynolds numbers. The aerodynamic coefficients of the compound wing were compared with those of the rectangular wing, which had an acceptable increase in its lift coefficient at small ground clearances, and its drag coefficient decreased compared to rectangular wing at a wide range of ground clearances, angles of attack, and Reynolds numbers. Furthermore, the lift to drag ratio of the compound wing improved considerably at small ground clearances. However, this improvement decreased at higher ground clearance. The drag polar of the compound wing showed the increment of lift coefficient versus drag coefficient was higher especially at small ground clearances. The Reynolds number had a gradual effect on lift and drag coefficients and also lift to drag of both wings. Generally, the nose down pitching moment of the compound wing was found smaller, but it was greater at high angle of attack and Reynolds number for all ground clearance. The center of pressure was closer to the leading edge of the wing in contrast to the rectangular wing. However, the center of pressure of the compound wing was later to the leading edge at high ground clearance, angle of attack, and Reynolds number.


2020 ◽  
Vol 8 (6) ◽  
pp. 4742-4750

The requirement for improving the aerodynamic efficiency and delaying the formation of stall over the wing has been of prime importance within the field of aviation. The main objective of the project is to further improve upon these two parameters. The configuration used for analysis consists of a NACA 2412 airfoil of chord length 0.982m with a 64mm cylinder at the leading edge. Analysis is completed using ANSYS Fluent, with a freestream velocity of 10m/s. The aerodynamic characteristics of three configuration bare airfoil, Airfoil with static cylinder and Airfoil with rotating cylinder are tabulated and plotted. The comparison is then followed by pressure and velocity contours to visualize the flow over each configuration. The rotating cylinder configuration shows a improvement in the aerodynamics characteristics. The rotating cylinder configuration gives the most favourable result. This study has a potential application in high lift devices and can be used as stall delaying device


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Lourelay Moreira dos Santos ◽  
Guilherme Ferreira Gomes ◽  
Rogerio F. Coimbra

Purpose The purpose of this study is to investigate the aerodynamic characteristics of a low-to-moderate-aspect-ratio, tapered, untwisted, unswept wing, equipped of sheared wing tips. Design/methodology/approach In this work, wind tunnel tests were made to study the influence in aerodynamic characteristics over a typical low-to-moderate-aspect-ratio wing of a general aviation aircraft, equipped with sheared – swept and tapered planar – wing tips. An experimental parametric study of different wing tips was tested. Variations in its leading and trailing edge sweep angle as well as variations in wing tip taper ratio were considered. Sheared wing tips modify the flow pattern in the outboard region of the wing producing a vortex flow at the wing tip leading edge, enhancing lift at high angles of attack. Findings The induced drag is responsible for nearly 50% of aircraft total drag and can be reduced through modifications to the wing tip. Some wing tip models present complex geometries and many of them present benefits in particular flight conditions. Results have demonstrated that sweeping the wing tip leading edge between 60 and 65 degrees offers an increment in wing aerodynamic efficiency, especially at high lift conditions. However, results have demonstrated that moderate wing tip taper ratio (0.50) has better aerodynamic benefits than highly tapered wing tips (from 0.25 to 0.15), even with little less wing tip leading edge sweep angle (from 57 to 62 degrees). The moderate wing tip taper ratio (0.50) offers more wing area and wing span than the wings with highly tapered wing tips, for the same aspect ratio wing. Originality/value Although many studies have been reported on the aerodynamics of wing tips, most of them presented complex non-planar geometries and were developed for cruise flight in high subsonic regime (low lift coefficient). In this work, an exploration and parametric study through wind tunnel tests were made, to evaluate the influence in aerodynamic characteristics of a low-to-moderate-aspect-ratio, tapered, untwisted, unswept wing, equipped of sheared wing tips (wing tips highly swept and tapered).


2020 ◽  
Vol 33 (10) ◽  
pp. 2610-2619 ◽  
Author(s):  
Zi KAN ◽  
Daochun LI ◽  
Tong SHEN ◽  
Jinwu XIANG ◽  
Lu ZHANG

2015 ◽  
Vol 75 (8) ◽  
Author(s):  
N.I. Ismail ◽  
A.H. Zulkifli ◽  
M. Hisyam Basri ◽  
R.J. Talib ◽  
Mahadzir M.M Mahadzir M.M

The geometric twist characteristic on twist morphing MAV wing has significant influence on its aerodynamic performances. Higher geometric twist magnitude induces higher lifts and drags generation. However, in order to determine the geometric twist performance, a detail analysis has to be carried out to extract the local angle of attack (AOA) value on each wing cross section. Thus, current works introduces a new method in extracting the local AOA value on a twist morphing MAV wing. The method manipulates the automated coordinate generation produced by Ansys software and combined the generated coordinates with manual determination of local AOA magnitude. Based on the analysis executed on a twist morphing wing sample, 30 local AOA values were obtained from 30 wing cross sections. By using the local AOA value at the root chord and wing tip, the geometric twist magnitude or twist intensity for a twist morphing wing is determined. Based on a selected twist morphing MAV wing sample, the local AOA extraction method able to calculate the wing geometric twist at ϵ = 12.5°. 


Author(s):  
Marcos André de Oliveira ◽  
Paulo Guimarães de Moraes ◽  
Luiz Antonio Alcântara Pereira

Sign in / Sign up

Export Citation Format

Share Document