scholarly journals Pemanfaatan serat alam kulit terap sebagai bahan kombinasi pembuatan winglet sepeda motor

2020 ◽  
Vol 9 (1) ◽  
Author(s):  
Ari Rianto ◽  
Leo Dedy Anjiu ◽  
Suhendra Suhendra

The development of new natural fiber material as a composite reinforcing material needs to be continued. The use of natural fibers developed in this study was obtained from applied bark. The applied skin fiber is chosen as a composite reinforcing material because it has strong characteristics when pulled. This study was conducted to determine the impact strength of a combination of the arrangement of the composite layer of applied fiber and glass fiber with a polyester resin matrix in the manufacture of motorcycle winglets. The making of composite specimens was carried out by hand lay-up and pressing techniques. composite specimens tested consisted of composite A (100% fiberglass), composite B (100% applied fiber), composite C (fiberglass, applied fiber, fiberglass), and composite D (applied fiber, fiberglass, applied fiber). The treatment of the applied fiber was carried out by soaking 5% NaOH for 2 hours. Impact test specimens and procedures refer to the ASTM D256-00 standard. The results of the study obtained that the material recommended in the manufacture of motorcycle winglets is composite C, which is a combination of fiberglass, applied fiber, fiberglass. The results of the C composite impact strength testing were obtained at 2.6581 J / mm2. The impact strength of composite C increased by 79% compared to the impact strength of composite B using pure applied fiber (100% applied fiber). The large void tendency in natural fiber composites using the hand lay-up method reduces the impact strength so that fiberglass is more dominant as a determinant of the impact strength increase.Keywords : Applied fiber, impact test, winglet.

Natural fibers from plants are gaining importance and may substitute wood in the production of wood plastic composites (WPC). To ensure continuity of fiber supply and sustainability of WPC industries, fibers of various types could be mixed together to obtain Mix WPC. However, research need to be carried out to identify the contribution of different fiber type collectively to the mechanical properties of Mix natural fiber polymer composite (NFPC). In this study, preliminary work on the use of natural fibre (NF) such as kenaf, sugar palm and pineapple leaf fibers in the preparation of Mix NFPC were carried out. Four different fiber mix samples with different fiber ratio and size were formulated using polypropylene (PP) as the polymer matrix. Montmorrilonite (MMT) filler was added at constant amount for enhancement of composite mechanical properties. Samples were mixed and prepared using a twin screw extruder and mini injection moulding resepectively. Individual fibers and NFPC prepared were characterized using thermogravimetric analyzer (TGA). Tensile, flexural and impact strength of the composites were determined. Generally, it was found that addition of fiber mix at 50% fiber loading enhance the tensile and flexural strength of the various NFPC with minimal exceptions. The impact strength of the composites were comparable to that of blank PP implying that addition of fiber gives additional advantage besides being eco-friendly. It was also found that higher kenaf loading and different size of fiber mix contribute positively to the various strengths measured. In addition to that, composition of individual fibers also contribute to the mechanical properties of the NFPCs


2021 ◽  
Vol 4 ◽  
pp. 146-150
Author(s):  
Arthur Y. Leiwakabessy ◽  
Benjamin G. Tentua ◽  
Fany Laamena

Durian rind fiber composite as a reinforcement is one of the interesting research areas. Some of the advantages associated with using natural fibers due to reinforcement in polymers are their non-abrasive properties and low-cost consumption. Durian rind when processed further can be made into cellulose fiber which can be used as a natural filler in unsaturated polyester composites. Among various types of natural fibers, durian skin fiber is an alternative polymer composite filler. Durian skin can be obtained easily because it is a family waste that has not been used. To get a new composite material made from durian skin waste, and to help the community and government in handling durian skin waste. The purpose of this study was to determine the maximum value of the variation of the volume fraction of durian skin fiber on the impact strength and hardness strength according to the desired application. This study uses the Hand Lay Up method, in the manufacture of single fiber composites with variations in volume fraction of durian skin fiber: polyester matrix, namely, 10%: 90%, 20%: 80%, 30%: 70%, 40%: 60% and 50 %:50%. The results showed that there was an increase in the impact strength and hardness strength with the addition of the volume fraction, where the highest impact energy for the volume fraction of durian skin fiber was 50%: 50%, 0.7738 J, and the highest impact value was 0.0096725 J/mm² and energy the lowest impact is 10%: 90%, 0.461 J. and the lowest impact price is 0.0057685 J/mm². So it can be concluded that the impact strength and hardness of the durian skin fiber composite increased with the increase in the volume fraction of the fiber.


Polymers ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 2144
Author(s):  
Helena Oliver-Ortega ◽  
Quim Tarrés ◽  
Pere Mutjé ◽  
Marc Delgado-Aguilar ◽  
José Alberto Méndez ◽  
...  

The research toward environmentally friendly materials has devoted a great effort on composites based on natural fiber-reinforced biopolymers. These materials have shown noticeable mechanical properties, mainly tensile and flexural strengths, as a consequence of increasingly strong interfaces. Previous studies have shown a good interface between natural fibers and poly (lactic acid) (PLA) when these fibers present a low lignin content in their surface chemical composition (bleached fibers). Nonetheless, one of the main drawbacks of these materials is the hydrophilicity of the reinforcements in front of the mineral ones like glass fiber. Meanwhile, the behavior of such materials under impact is also of importance to evaluate its usefulness. This research evaluates the water uptake behavior and the impact strength of bleached Kraft softwood-reinforced PLA composites that have been reported to show noticeable tensile and flexural properties. The paper explores the differences between these bio-based materials and commodity composites like glass fiber-reinforced polypropylene.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Gebre Fenta Aynalem ◽  
Belete Sirahbizu

This study has endeavored to develop an Al2O3-filled natural fiber reinforced polymer composite which is intended to substitute the most widely used synthetic E-glass fiber material. To attain the desired objective of the work, 0, 5, 10, and 15 wt% Al2O3-filled chopped flax/unsaturated polyester resin composite have been developed by the conventional hand-lay-up method followed by a compression molding process. Consequently, characterization and mechanical property tests are conducted based on the ASTM standard. The results revealed that both tensile and impact strength properties of the base chopped flax/unsaturated polyester resin composite are all affected due to the inclusion and variation of the content of Al2O3 in 15 and 25 wt% fiber loading cases. It has been noticed that a 39.06% increase in the ultimate tensile strength of the composite in 25/UPR-5 composition has been gained. The effect of Al2O3 on the impact strength of the base composite has also been analyzed and a 45% increase has been observed in 15/UPR-10 composition. The findings also witnessed that the newly developed composite can be applied to make automotive parts such as mud guard and engine undercover.


Author(s):  
Mohammed Khazal ◽  
Salman H. Abbas ◽  
Younis M. Younis ◽  
Thabit Jamel

This study aims to enhance the mechanical properties of polymer material using type of natural fiber. Bamboo fiber considered the strongest between the natural fibers group, it have low density, high mechanical strength in addition to its availability makes it economically viable and have potential for used as engineering material. The study is concerned with evaluate some of the mechanical properties (Tensile strength, Bending strength, Impact strength) for the resultant composite reinforced with 10, 20 and 30 vol.% of bamboo fibers, as compared with received material. With the natural reinforcement, the optimum mechanical properties in comparison with the as received epoxy were achieved. The results indicated that the tensile strength increased from 13.51 MPa to 33.50 MPa (that is a percentage increase of 150 %), also the bending strength increased from 24.25 MPa to 44.5 MPa (that is a percentage increase about 83 %), as well as, the increase of the impact strength from 41 kJ/m2 to 69 kJ/m2 (that is a percentage increase about 68 %).


Polymer materials synthetic fibers, for example, glass and carbon gives point of interest of high stiffness and strength to weight proportion when compare with conventional construction materials, for example wood, cement and steel. The accessibility of natural fibers and comfort of manufacturing have attempted researchers to try locally accessible inexpensive fibers and do study for their feasibility of strengthening purpose. Accordingly, many researchers do broad study on the properties of polymer matrix composite. The synthetic fiber substituting with the natural fiber for example, jute, sisal, pineapple and bamboo. The natural fiber removed by retting and manual procedures were exposed to soluble base treatment. this study is concerned with the investigation of mechanical properties of Grewia Optiva and jute fiber with epoxy resin matrix-based polymer composites. study investigate the tensile, bending and abrasion behavior of composites material made by grewia optiva and jute into epoxy resin. result shows that the better tensile strength of Grewia optiva fiber composite.


2020 ◽  
Vol 10 (01) ◽  
pp. 24
Author(s):  
Harini Sosiati ◽  
Cahyo Trisedyo Utomo ◽  
Iwan Setiono ◽  
Cahyo Budiyantoro

Thermoplastic and thermoset polymer composites reinforced with kenaf fiber or CaCO<sub>3</sub> have been extensively investigated. However, the study on the combination of kenaf fiber and CaCO<sub>3</sub> reinforced epoxy resin is rare. This research discussed the effect of CaCO<sub>3</sub> particle size and the ratio of kenaf to CaCO<sub>3</sub> content on the impact strength of alkali-treated kenaf/ CaCO<sub>3</sub>/epoxy resin hybrid composites. Thirty % of the hybrid kenaf fibers and CaCO<sub>3</sub> particles reinforced epoxy resin composites were fabricated by hand lay-up technique followed by cold press. Impact test of the composite specimens was conducted using a Charpy Impact test according to ASTM D 6110. The morphology of impact fracture surface was examined by scanning electron microscopy (SEM). The results showed that the impact strength of the hybrid composite increased with the decrease of CaCO<sub>3</sub> particle size, and increasing the ratio of kenaf to CaCO<sub>3</sub>. Interfacial bonding between the reinforcement (kenaf and CaCO<sub>3</sub>) and epoxy resin matrix, the uniform dispersion of kenaf and CaCO<sub>3</sub> within the epoxy resin matrix are two crucial factors influencing the impact strength of the composite.


Author(s):  
Muhamad Fitri ◽  
Shahruddin Mahzan

The need of coconuts in Indonesia is relatively high. The use of large quantities of coconuts produces large amounts of organic waste from coco fiber, which tends to become waste if it is not used to be beneficial for humans.One of the potential uses of coconut fiber is as a reinforcement of natural fibers in polymer matrix composite materials. Recently, the applications of composite materials have been expanded widely including structural angine component which whitstand certain load like impact load. But most of them used synthetic fiber. Although the use of natural fibers as reinforcement in composite materials has been widely studied, their use is still limited because natural fibers have their own advantages and disadvantages. The purpose of this study was to measure the impact strength of specimens of coconut fiber reinforced polymer matrix composite material, and to determine the effect of the length and concentration of coconut fiber on its impact strength. A significant and valid regression model was also generated in this research, that states the relationship between fiber length and fiber content of resin matrix composite material to its impact strength. The result shows that the impact strength of the samples were influenced by fiber content and fiber length. The regression models for the impact strength of  resin composite reinforced with coconut fiber is Y = 4.44 +0.180 X1 – 0.52 X2  Where: Y = Impact Strength (kJ/m2), and X1= Fiber length (mm), and X2= Fiber content (%).


2011 ◽  
Vol 471-472 ◽  
pp. 291-296 ◽  
Author(s):  
Piyush P. Gohil ◽  
A.A. Shaikh

Composites are becoming essential part of today’s material because they offer advantages such as low weight, corrosion resistance, high fatigue strength; faster assembly etc. composites are generating curiosity and interest all over the worlds. The attempts can be found in literature for composite materials high strength fiber and also natural fiber like jute, flax and sisal natural fibers provides data but there is need of experimental data availability for unidirectional natural fiber composite with seldom natural fiber like cotton, palm leaf etc., it can provide a feasible range of alternative materials to suitable conventional material. It was decided to carry out the systematic experimental study for the effect of volume fraction of reinforcement on longitudinal strength as well as Modulus of Elasticity (MOE) using developed mould-punch set up and testing aids. The testing is carried out as per ASTM D3039/3039M-08. The comparative assessment of obtained experimental results with literature is also carried out, which forms an important constituent of present work. It is also observed through SEM images and theoretical investigations that interface/interphase plays and important role in natural fiber composite.


2018 ◽  
Vol 2 (1) ◽  
Author(s):  
Sri Hastuti ◽  
Catur Pramono ◽  
Yafi Akhmad

The Eichornia crassipes fiber have potentially as a composite reinforcing material. The advantage of composites with natural fibers like to light weight, corrosion resistance, water resistance, attractive performance, and without machining process. The purpose of using natural fiber as an alternative material to replace glass fiber composite material with Eichornia crassipes fibers are friendly and cheap. The research material used Eichornia crassipes fiber, NaOH, Etanol, and H2O. Processing of Eichornia crassipes fiber is washing with water, natural drying ± 10 days in eviromental, fiber taking with steel brush. Dry fibre were subjected to 10%, 20%, 30% NaOH and ethanol solution with variations of immersion time of 2, 4, 6 hours, neutralization with H20, and drying at room temperature. The Single fiber tensile test specimens were made with variations of treatment type in NaOH and Ethanol solution (10%, 20%, 30%), immersion time of 2, 4, and 6 hours. Single fiber test specimens refer to standard ASTM D 3379. Optimum tensile strength test results on NaOH treatment 20% variation of immersion time 4 hours: 28.402 N / mm2 and on ethanol treatment 20% variation of immersion time 2 hours: 48.197 N / mm2.


Sign in / Sign up

Export Citation Format

Share Document