scholarly journals Self Diagnostics and Isolation Mechanisms for Mixed Criticality Systems

Author(s):  
Asmaa Tellabi ◽  
Christoph Ruland ◽  
Karl Waedt ◽  
Abdelbast Sabri

Virtualization is a technology that is frequently employed in computers and servers to provide isolation for execution environments, and to support the execution of multiple Operating Systems (OS) on the same hardware platform. In the embedded systems´ world, virtualization has been a rising trend, essentially because it offers an isolation mechanism that provides hardware manufacturer´ independence and it avoids obsolescence issues. The isolation mechanism supports safety and security measures, and assists in the certification of safety-critical systems. Virtualization offers improved performances, better transparency, portability and interoperability by integrating hardware and software resources, and also networking services into one computing entity. It makes the integration process of Mixed Criticality Systems (MCS) easier. For industries, FieldProgrammable Gate Arrays (FPGAs) hardware solutions provide the needed level of flexibility and performance. In this paper, a Self-test application is integrated in the hardware and also in the software level. The importance of self-test applications for Instrumentation and Control (I&C) systems will be discussed in the context of virtualization. For this implementation a type 1 hypervisor called Xtratum is used. An analysis of inter-partition communication channels´ performance will be provided including the implications multicore approaches will have on communication. The novelty of this work is to study the isolation impact multicore approaches can have on inter-partitions communications in Xtratum. Another novel aspect is the implementation of a self-test application in the hypervisor and the board as well. 

TAPPI Journal ◽  
2012 ◽  
Vol 11 (7) ◽  
pp. 37-46 ◽  
Author(s):  
PEDRO E.G. LOUREIRO ◽  
SANDRINE DUARTE ◽  
DMITRY V. EVTUGUIN ◽  
M. GRAÇA V.S. CARVALHO

This study puts particular emphasis on the role of copper ions in the performance of hydrogen peroxide bleaching (P-stage). Owing to their variable levels across the bleaching line due to washing filtrates, bleaching reagents, and equipment corrosion, these ions can play a major role in hydrogen peroxide decomposition and be detrimental to polysaccharide integrity. In this study, a Cu-contaminated D0(EOP)D1 prebleached pulp was subjected to an acidic washing (A-stage) or chelation (Q-stage) before the alkaline P-stage. The objective was to understand the isolated and combined role of copper ions in peroxide bleaching performance. By applying an experimental design, it was possible to identify the main effects of the pretreatment variables on the extent of metals removal and performance of the P-stage. The acid treatment was unsuccessful in terms of complete copper removal, magnesium preservation, and control of hydrogen peroxide consumption in the following P-stage. Increasing reaction temperature and time of the acidic A-stage improved the brightness stability of the D0(EOP)D1AP bleached pulp. The optimum conditions for chelation pretreatment to maximize the brightness gains obtained in the subsequent P-stage with the lowest peroxide consumption were 0.4% diethylenetriaminepentaacetic acid (DTPA), 80ºC, and 4.5 pH.


Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 1376-P
Author(s):  
GREGORY P. FORLENZA ◽  
BRUCE BUCKINGHAM ◽  
JENNIFER SHERR ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

Diabetes ◽  
2018 ◽  
Vol 67 (Supplement 1) ◽  
pp. 207-OR
Author(s):  
BRUCE A. BUCKINGHAM ◽  
JENNIFER SHERR ◽  
GREGORY P. FORLENZA ◽  
THOMAS A. PEYSER ◽  
JOON BOK LEE ◽  
...  

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Melek Pehlivan ◽  
Tülay K. Ayna ◽  
Maşallah Baran ◽  
Mustafa Soyöz ◽  
Aslı Ö. Koçyiğit ◽  
...  

Abstract Objectives There are several hypotheses on the effects of the rs1738074 T/C single nucleotide polymorphism in the TAGAP gene; however, there has been no study on Turkish pediatric patients. We aimed to investigate the association of celiac disease (CD) and type 1 diabetes mellitus (T1DM) comorbidity with the polymorphism in the TAGAP gene of Turkish pediatric patients. Methods Totally, 127 pediatric CD patients and 100 healthy children were included. We determined the polymorphism by the allele-specific polymerase chain reaction method. We used IBM SPSS Statistics version 25.0 and Arlequin 3.5.2 for the statistical analyses. The authors have no conflict of interest. Results It was determined that 72% (n=154) of only CD patients had C allele, whereas 28% (n=60) had T allele. Of the patients with celiac and T1DM, 42.5% (n=17) and 57.5% (n=23) had T and C alleles, respectively. Of the individuals in control group, 67% (n=134) had C allele, whereas 33% (n=66) had T allele. Conclusions There was no significant difference in the genotype and allele frequencies between the patient and control groups (p>0.05). There was no significant association between the disease risk and the polymorphism in our study group.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alexander Lind ◽  
Ilaria Marzinotto ◽  
Cristina Brigatti ◽  
Anita Ramelius ◽  
Lorenzo Piemonti ◽  
...  

AbstractAn increased incidence of narcolepsy type 1 (NT1) was observed in Scandinavia following the 2009–2010 influenza Pandemrix vaccination. The association between NT1 and HLA-DQB1*06:02:01 supported the view of the vaccine as an etiological agent. A/H1N1 hemagglutinin (HA) is the main antigenic determinant of the host neutralization antibody response. Using two different immunoassays, the Luciferase Immunoprecipitation System (LIPS) and Radiobinding Assay (RBA), we investigated HA antibody levels and affinity in an exploratory and in a confirmatory cohort of Swedish NT1 patients and healthy controls vaccinated with Pandemrix. HA antibodies were increased in NT1 patients compared to controls in the exploratory (LIPS p = 0.0295, RBA p = 0.0369) but not in the confirmatory cohort (LIPS p = 0.55, RBA p = 0.625). HA antibody affinity, assessed by competition with Pandemrix vaccine, was comparable between patients and controls (LIPS: 48 vs. 39 ng/ml, p = 0.81; RBA: 472 vs. 491 ng/ml, p = 0.65). The LIPS assay also detected higher HA antibody titres as associated with HLA-DQB1*06:02:01 (p = 0.02). Our study shows that following Pandemrix vaccination, HA antibodies levels and affinity were comparable NT1 patients and controls and suggests that HA antibodies are unlikely to play a role in NT1 pathogenesis.


2021 ◽  
Vol 80 (Suppl 1) ◽  
pp. 45.2-45
Author(s):  
I. Heggli ◽  
R. Schüpbach ◽  
N. Herger ◽  
T. A. Schweizer ◽  
A. Juengel ◽  
...  

Background:Modic type 1 changes (MC1) are vertebral bone marrow (BM) edema that associate with non-specific low back pain (LBP). Two etiologies have been described. In the infectious etiology the anaerobic aerotolerant Cutibacterium acnes (C. acnes) invades damaged intervertebral discs (IVDs) resulting in disc infection and endplate damage, which leads to the evocation of an immune response. In the autoinflammatory etiology disc and endplate damage lead to the exposure of immune privileged disc cells and matrix to leukocytes, thereby evoking an immune response in the BM. Different etiologies require different treatment strategies. However, it is unknown if etiology-specific pathological mechanisms exist.Objectives:The aim of this study was to identify etiology-specific dysregulated pathways of MC1 and to perform in-depth analysis of immune cell populations of the autoinflammatory etiology.Methods:BM aspirates and biopsies were obtained from LBP patients with MC1 undergoing spinal fusion. Aspirates/biopsies were taken prior screw insertion through the pedicle screw trajectory. From each patient, a MC1 and an intra-patient control aspiration/biopsy from the adjacent vertebral level was taken. If C. acnes in IVDs adjacent to MC1 were detected by anaerobic bacterial culture, patients were assigned to the infectious, otherwise to the autoinflammatory etiology.Total RNA was isolated from aspirates and sequenced (Novaseq) (infectious n=3 + 3, autoinflammatory n=5 + 5). Genes were considered as differentially expressed (DEG) if p-value < 0.01 and log2fc > ± 0.5. Gene ontology (GO) enrichment was performed in R (GOseq), gene set enrichment analysis (GSEA) with GSEA software.Changes in cell populations of the autoinflammatory etiology were analyzed with single cell RNA sequencing (scRNAseq): Control and MC1 biopsies (n=1 + 1) were digested, CD45+CD66b- mononuclear cells isolated with fluorescence activated cell sorting (FACS), and 10000 cells were sequenced (10x Genomics). Seurat R toolkit was used for quality-control, clustering, and differential expression analysis.Transcriptomic changes (n=5 + 5) of CD45+CD66b+ neutrophils isolated with flow cytometry from aspirates were analyzed as for total bulk RNAseq. Neutrophil activation (n=3 + 3) was measured as CD66b+ expression with flow cytometry. CD66bhigh and CD66blow fractions in MC1 and control neutrophils were compared with paired t-test.Results:Comparing MC1 to control in total bulk RNAseq, 204 DEG in the autoinflammatory and 444 DEG in the infectious etiology were identified with only 67 shared genes (Fig. 1a). GO enrichment revealed “T-cell activation” (p = 2.50E-03) in the autoinflammatory and “complement activation, classical pathway” (p=1.1E-25) in the infectious etiology as top enriched upregulated biological processes (BP) (Fig 1b). ScRNAseq of autoinflammatory MC1 showed an overrepresentation of T-cells (p= 1.00E-34, OR=1.54) and myelocytes (neutrophil progenitor cells) (p=4.00E-05, OR=2.27) indicating an increased demand of these cells (Fig. 1c). Bulk RNAseq analysis of neutrophils from the autoinflammatory etiology revealed an activated, pro-inflammatory phenotype (Fig 1d), which was confirmed with more CD66bhigh neutrophils in MC1 (+11.13 ± 2.71%, p=0.02) (Fig. 1e).Figure 1.(a) Venn diagram of DEG from total bulk RNAseq (b) Top enriched upregulated BP of autoinflammatory (left) and infectious (right) etiology (c) Cell clustering of autoinflammatory MC1 BM (d) Enrichment of “inflammatory response” gene set in autoinflammatory MC1 neutrophils (e) Representative histogram of CD66b+ expression in MC1 and control neutrophils.Conclusion:Autoinflammatory and infectious etiologies of MC1 have different pathological mechanisms. T-cell and neutrophil activation seem to be important in the autoinflammatory etiology. This has clinical implication as it could be explored for diagnostic approaches to distinguish the two MC1 etiologies and supports developing targeted treatments for both etiologies.Disclosure of Interests:None declared


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Lior Rennert ◽  
Moonseong Heo ◽  
Alain H. Litwin ◽  
Victor De Gruttola

Abstract Background Beginning in 2019, stepped-wedge designs (SWDs) were being used in the investigation of interventions to reduce opioid-related deaths in communities across the United States. However, these interventions are competing with external factors such as newly initiated public policies limiting opioid prescriptions, media awareness campaigns, and the COVID-19 pandemic. Furthermore, control communities may prematurely adopt components of the intervention as they become available. The presence of time-varying external factors that impact study outcomes is a well-known limitation of SWDs; common approaches to adjusting for them make use of a mixed effects modeling framework. However, these models have several shortcomings when external factors differentially impact intervention and control clusters. Methods We discuss limitations of commonly used mixed effects models in the context of proposed SWDs to investigate interventions intended to reduce opioid-related mortality, and propose extensions of these models to address these limitations. We conduct an extensive simulation study of anticipated data from SWD trials targeting the current opioid epidemic in order to examine the performance of these models in the presence of external factors. We consider confounding by time, premature adoption of intervention components, and time-varying effect modification— in which external factors differentially impact intervention and control clusters. Results In the presence of confounding by time, commonly used mixed effects models yield unbiased intervention effect estimates, but can have inflated Type 1 error and result in under coverage of confidence intervals. These models yield biased intervention effect estimates when premature intervention adoption or effect modification are present. In such scenarios, models incorporating fixed intervention-by-time interactions with an unstructured covariance for intervention-by-cluster-by-time random effects result in unbiased intervention effect estimates, reach nominal confidence interval coverage, and preserve Type 1 error. Conclusions Mixed effects models can adjust for different combinations of external factors through correct specification of fixed and random time effects. Since model choice has considerable impact on validity of results and study power, careful consideration must be given to how these external factors impact study endpoints and what estimands are most appropriate in the presence of such factors.


2005 ◽  
Vol 20 (16) ◽  
pp. 3811-3814
Author(s):  
◽  
PAUL LUJAN

A new silicon detector was designed by the CDF collaboration for Run IIb of the Tevatron at Fermilab. The main building block of the new detector is a "supermodule" or "stave", an innovative, compact and lightweight structure of several readout hybrids and sensors with a bus cable running directly underneath the sensors to carry power, data, and control signals to and from the hybrids. The hybrids use a new, radiation-hard readout chip, the SVX4 chip. A number of SVX4 chips, readout hybrids, sensors, and supermodules were produced and tested in preproduction. The performance (including radiation-hardness) and yield of these components met or exceeded all design goals. The detector design goals, solutions, and performance results are presented.


Neurosurgery ◽  
2008 ◽  
Vol 63 (3) ◽  
pp. 487-497 ◽  
Author(s):  
Timothy H. Lucas ◽  
Daniel L. Drane ◽  
Carl B. Dodrill ◽  
George A. Ojemann

ABSTRACT OBJECTIVE The purpose of this investigation was to determine whether clinical speech deficits after brain injury are associated with functional speech reorganization. METHODS Across an 18-year interval, 11 patients with mild-to-moderate speech deficits underwent language mapping as part of their treatment for intractable epilepsy. These “aphasics” were compared with 14 matched “control” patients with normal speech who also were undergoing epilepsy surgery. Neuroanatomic data were compared with quantitative language profiles and clinical variables. RESULTS Cortical lesions were evident near speech areas in all aphasia cases. As expected, aphasic and control patients were distinguished by quantitative language profiles. The groups were further distinguished by the anatomic distribution of their speech sites. A significantly greater proportion of frontal speech sites was found in patients with previous brain injury, consistent with frontal site recruitment. The degree of frontal recruitment varied as a function of patient age at the time of initial brain injury; earlier injuries were associated with greater recruitment. The overall number of speech sites remained the same after injury. Significant associations were found between the number of the speech sites, naming fluency, and the lesion proximity in the temporal lobe. CONCLUSION Language maps in aphasics demonstrated evidence for age-dependent functional recruitment in the frontal, but not temporal, lobe. The proximity of cortical lesions to temporal speech sites predicted the overall extent of temporal lobe speech representation and performance on naming fluency. These findings have implications for neurosurgical planning in patients with preoperative speech deficits.


Sign in / Sign up

Export Citation Format

Share Document