scholarly journals Improvement of mooring tests of main engine running to fixed pitch propeller

Author(s):  
Aleksei Sergeevich Sharatov ◽  
Alexander Nikolaevich Gorbenko

The most important stage in vessel’s construction is acceptance tests. By testing the main power plant of the vessel the design solutions adopted to ensure stable operation of the main engine and the propeller are checked. Such a check of the main engine according to design characteristics at the quay wall can significantly reduce sea trials cost. In practice, the peculiarities of the propeller operation at zero free-flow velocity at the quay wall limit the operating modes of the main power plant and the possibilities of mooring tests. There are considered the traditional and innovative simulation methods and tools used in mooring tests. The methods allow unloading the engine in terms of torque bringing its operation mode closer to the design parameters. An urgent scientific and technical problem has been solved to reduce the mechanical stress of the main engine, which operates according to the mooring characteristic on a fixed pitch propeller. The factors influencing the value of the resistance moment of the propeller at a zero vector of the incident flow are determined. Possible directions for improving the acceptance tests of the main power plant by supplying an additional environment, i.e. air to the suction surface of the propeller blade, are substantiated. In the complex of computational fluid dynamics, a computational model of a fixed pitch propeller has been created. The amount of air required to change the propeller operating mode has been estimated. Resistance moment of the propeller for various methods of air supply to the propeller has been analyzed. Additional means of controlling the main engine operating mode at the stages of the ship's life cycle are proposed.

2011 ◽  
Vol 347-353 ◽  
pp. 631-634
Author(s):  
Qin Liang Tan ◽  
Cai Juan Zhang ◽  
Xiao Ying Hu ◽  
Li Gang Wang ◽  
Qiang Lu ◽  
...  

Biomass direct combustion power generation is the most simple but effective way in dealing with environmental issues and energy crisis. A comprehensive diagnosis with accurate evaluation of energy saving potential of a given biomass power plant is of great importance in lowing the cost of generating electricity, reducing the consumption of energy and pollutant emissions [1]. This paper throws light upon an innovative energy consumption diagnosis method-the specific consumption analysis theory, which is based on the First and Second law of thermodynamics [2,3]. Taking a given biomass power plant of National Energy Group as an example, mathematical models are made based on all the components and processes. The specific consumption analysis theory is employed to calculate the specific consumption within the biomass power plant using design parameters under design operating conditions, thus demonstrating the specific consumption distribution in the power plant, which provides theoretical basis for energy-saving and optimization in biomass power plant.


Author(s):  
Irina Anatolievna Borovikova

The article touches upon reliability issues of energy management systems (EMS) of marine power plants in emergency situations caused by disturbance of the working media consumption and their subsequent recovery. The mathematical model of processes allows to determine the nature of changes in temperature and pressure of water and lube oil in EMS systems. The requirements to the characteristics of automatic control systems of the marine power plant have been formulated. Basic provisions of the reliability theory are followed by presentation of methods of calculating reliability indices of complex technical systems. The article presents the results of the study of non-stationary modes and reliability indices. Reasonable requirements for automated control systems were obtained through the analysis of working environments and of equipment operating in non-stationary modes, non-exceedance of safety limits of marine power plant operation being taken as the admissibility criterion. Besides, there are possible special modes resulted from emergency situations caused by the power plant equipment failure. Hence, for operation and design of the analyses it is important to study changes of working media in the circulation systems, which resulted from the failure of the pumps. Basic circuit of lubrication and cooling systems of the ship diesel power plants has been approved as recommended by the company "MAN B&W" for slow speed diesel engines standard series MC. Among the recommended schemes there was approved the scheme of the main engine with an autonomous cooling circuit. Schematic diagram of energy systems of a diesel power plant has been made under recommendations of the engine developer. Specifications of the component parts of the ship diesel power plant have been taken as standard for manufactured machinery. A low running L90MC-C four-cylinder main engine manufactured by "MAN B&W" was chosen as a research sample. A mathematical model, as applied to the given problem, consists of 10 algebraic equations for nonsteady working media consumption and 18 differential equations for nonsteady heat transfer in heat exchangers, as well as equations for transport delay in the lubrication systems of internal combustion engines.


1999 ◽  
Author(s):  
Alejandro Zaleta-Aguilar ◽  
Armando Gallegos-Muñoz ◽  
Antonio Valero ◽  
Javier Royo

Abstract This work builds on the previous work on “Exergoeconomics Fuel-Impact” developed by Torres (1991), Valero et. al. (1994), and compares it with respect to the Performance Test Code (PTC’s) actually applied in power plants (ASME/ANSI PTC-6, 1970). With the objective of proposing procedures for PTC’s in power plant’s based on an exergoeconomics point of view. It was necessary to validate the Fuel-Impact Theories, and improve the conceptual expression, in order to make it more applicable to the real conditions in the plant. By mean of a program using simulation and field data, it was possible to validate and compare the procedures. This work has analyzed an example of a 110 MW Power Plant, in which all the exergetic costs have been determined for the steam cycle, and a fuel-impact analysis has been developed for the steam turbines at the design and off-design conditions. The result of the fuel-impact analysis is compared with respect to a classical procedure related in ASME-PTC-6.


2018 ◽  
Vol 251 ◽  
pp. 03016
Author(s):  
Alexander Marutyan ◽  
Tamazi Kobaliya ◽  
Evgeny Galdin

A new technical solution for re-profiling round tubes into flat-oval ones with a ratio of 1 / 3,064 is presented, which increases their bending strength. The calculation of the optimal parameters of thin-walled sections of the flat-oval shape is given by an approximate method, the correctness of which is confirmed by testing from the standard profiles used. This calculation is repeated with respect to thin-walled sections of the oval shape. The whole diagram of changes in the design parameters of flat-oval and oval pipes is presented in the transformation of their cross-sections from vertical configurations to horizontal ones, including the transition through the outline of a circular shape. The comparative analysis of optimized cross sections of flat oval, oval and round tubes is carried out taking into account the elastic and elastic-plastic deformations of the structural material, where the length of the midline of the thin-walled section is taken as the dividing line between these deformations. The choice is substantiated in favour of flat-oval profile pipes due to their simpler shape including faces of constant curvature (flat and semi-circular), relatively low cost, lower height, greater compactness, higher resistance moment.


2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Hao Shi ◽  
Qi Cai ◽  
Yuqing Chen

The best estimation process of AP1000 Nuclear Power Plant (NPP) requires proper selections of parameters and models so as to obtain the most accurate results compared with the actual design parameters. Therefore, it is necessary to identify and evaluate the influences of these parameters and modeling approaches quantitatively and qualitatively. Based on the best estimate thermal-hydraulic system code RELAP5/MOD3.2, sensitivity analysis has been performed on core partition methods, parameters, and model selections in AP1000 Nuclear Power Plant, like the core channel number, pressurizer node number, feedwater temperature, and so forth. The results show that core channel number, core channel node number, and the pressurizer node number have apparent influences on the coolant temperature variation and pressure drop through the reactor. The feedwater temperature is a sensitive factor to the Steam Generator (SG) outlet temperature and the Steam Generator outlet pressure. In addition, the cross-flow model nearly has no effects on the coolant temperature variation and pressure drop in the reactor, in both the steady state and the loss of power transient. Furthermore, some fittest parameters with which the most accurate results could be obtained have been put forward for the nuclear system simulation.


Author(s):  
M. D. Duran ◽  
E. A. Rinco´n ◽  
M. Sa´nchez

This work describes the thermoeconomic study of an integrated combined cycle parabolic trough power plant. The parabolic trough plant will economize boiler activity, and thus the thermoeconomic optimization of the configuration of the boiler, including the parabolic trough plant, will be achieved. The objective is to obtain the optimum design parameters for the boiler and the size of the parabolic field. The proposal is to apply the methodology employed by Duran [1] and Valde´s et. al. [2], but with the inclusion of the parabolic trough plant into the optimization problem. It is important to point out that the optimization model be applied to a single pressure level configuration. For future works, it is proposed that the same model be applied to different configurations of integrated combined cycle solar power plants. As a result the optimum thermoeconomic design will be obtained for a parabolic trough plant used to economize the HRSG.


2013 ◽  
Vol 373-375 ◽  
pp. 1345-1348 ◽  
Author(s):  
Zong Jiang Mu ◽  
Yan Xu ◽  
Shao Bo Yan

Power plant relay protection setting value of the hidden harm causes of relay protection device is not correct, safe and stable operation of the power plant. In this paper, from the angle of the safe operation of power plant, the hidden danger to plant with the protection setting is studied and then the risk evaluation method of power plant relay protection setting values of hidden trouble is proposed. From the power plant relay protection setting value considering two aspects of probability and consequences of potential outbreak of different values, value potential risk is considered, and of a certain power plant in Hubei was made the risk assessment and analysis, in order to verify the theoretical rationality and accuracy.


2011 ◽  
Vol 130-134 ◽  
pp. 2527-2529
Author(s):  
Jin Tao Guo ◽  
Jiang Xin

The improvement of RB is significant for safety of both the power plant and power grid. This paper, took the 2 × 350MW unit of Inner Mongolia Huaneng Power Plant for instance, researched on three ways to improve water supply RB, like taking a proper sliding pressure curve, improving the water supply system and optimizing the boiler combustion. In the research, we succeeded to maintain main parameters of the unit within a safety range during RB operation, and avoided a unit trip accident causing by one single pump’s fault trip. Therefore, the research’s success settled a good base for the unit’s safe and stable operation.


Author(s):  
Laura Bucho´ ◽  
Mari´a Jose´ Palomo ◽  
Juan Ignacio Vaquer ◽  
Bele´n Lo´pez ◽  
Gregorio Rui´z ◽  
...  

This paper presents the results obtained from the IBE-CNC/DAQ-090827 project, conducted by the company “Titania Servicios Tecnolo´gicos, S.L.” in collaboration with the “Instituto de Seguridad Industrial, Radiofi´sica y Medioambiental” (ISIRYM), in the “Universidad Polite´cnica de Valencia”, for the company “Iberdrola Generacio´n S.A”. The objective is the acquisition of the pressure sensor signal and the measurement at points C85 and N32 from the cabin of the Turbine Control System in Cofrentes Nuclear Power Plant. With the study of previous data, one can obtain the Bode plot of the crossed signals as requested in the technical specification IM 0191 I. Frequency response (i.e. how the system varies its gain and offset depending on the frequency) defines the dynamics.


Sign in / Sign up

Export Citation Format

Share Document