scholarly journals Accuracy Assessment of Atlas L-band GNSS Global Correction Service and Autonomous Positioning at Perlis, Malaysia

2021 ◽  
Vol 18 (2) ◽  
pp. 57
Author(s):  
Mohd Zainee Zainal ◽  
Wan Muhammad Syafiq Wan Mohd Suhaimi ◽  
Nurul Ain Mohd Zaki ◽  
Noorzalianee Noorzalianee Ghazali ◽  
Khairulazhar Zainuddin

Differential Global Navigation Satellite System (DGNSS) is the most common positioning method used for navigation in the hydrography field. During the loss of the correction signal, the differential solution becomes an autonomous solution that may affect the accuracy of the position during that time. However, the availability of the Atlas L-band global correction service that adapts the Real-Time Precise Point Positioning (RT-PPP) technique has broadened the choice of solutions that can be used for navigation in the maritime industry and may solve the problem of signal loss. This research compares the positioning between autonomous solution GNSS and Atlas L-band correction solution using the static method to assess the accuracy of positioning between both methods. Data acquisition of the autonomous positioning and Atlas L-band service was conducted by using Hemisphere receiver VS330 and antenna A43. The statistical T-test reveals that the accuracy of analysis Atlas-L band and autonomous solution GNSS using static positioning was significant, as the p < 0.05 with 95% confidence interval. Besides, the result also shows that the position given by the Atlas L-band is more accurate and precise than Autonomous Solution GNSS, with an average position of 0.479 meters and 2.281 meters, respectively. Ultimately, the continuity of positioning data given by the Atlas L-band in the northern part of Malaysia is good, and positioning using Atlas L-band can be classified as Special Order based on the classification table by the International Hydrographic Organisation (IHO). Keywords: Atlas L-Band, GNSS, RT-PPP, Autonomous Positioning

2021 ◽  
Vol 2066 (1) ◽  
pp. 012052
Author(s):  
Wenbiao Guo ◽  
Hang Li ◽  
Feng Yin ◽  
Bo Ai

Abstract In the existing vehicle positioning system based on Global Navigation Satellite System/Inertial Navigation System (GNSS/INS), when the GNSS signal is lost, the error accumulated by using only the INS will damage the positioning accuracy. In order to improve the accuracy, this paper proposed a positioning method based on data-driven and learning models, which utilized distributed data sets to collaboratively construct accurate positioning models through federated fusion algorithms without sacrificing user privacy. In the field scenarios of IID and Non-IID types, this paper compared the performance of INS and the existing two typical methods, DeepSense and PVAUA, it is verified that the two federated learning algorithm models constructed had higher positioning accuracy in different scenarios and different GNSS signal loss durations. The results were analyzed.


Author(s):  
H. H. Garcia ◽  
M. E. Mercurio ◽  
D. P. Noveloso ◽  
R. B. Reyes

Abstract. Global Navigation Satellite System (GNSS) provides users worldwide with a three-dimensional positioning, velocity and time solution 24-hour service using transmitted radio signals from orbiting satellites in space. Dependency on the number of satellites available during observation can improve satellite geometry and increase redundancy which be a factor for the quality of GNSS positioning result. Each position derived from different combinations of satellite systems were evaluated aside from using GPS only. The test is conducted by single and relative positioning method using survey grade receivers. Post-processing of GNSS data were processed in an open source software, RTKLIB, getting the RMS and 2DRMS of each position derived from different combination. The resulting satellite system combination for single positioning for horizontal were better considering the inclusion of GPS and BeiDou. However, position accuracy degrades when the inclusion of GLONASS and/or GALILEO during the processing. For relative positioning, position derived from the inclusion of GALILEO, BeiDou and QZSS degrades the results. For height results in single positioning method, the displacement from the mean value is about 4.00 meters which is derived from Galileo only satellite system.


Aerospace ◽  
2021 ◽  
Vol 8 (10) ◽  
pp. 280
Author(s):  
Farzan Farhangian ◽  
Hamza Benzerrouk ◽  
Rene Landry

With the emergence of numerous low Earth orbit (LEO) satellite constellations such as Iridium-Next, Globalstar, Orbcomm, Starlink, and OneWeb, the idea of considering their downlink signals as a source of pseudorange and pseudorange rate measurements has become incredibly attractive to the community. LEO satellites could be a reliable alternative for environments or situations in which the global navigation satellite system (GNSS) is blocked or inaccessible. In this article, we present a novel in-flight alignment method for a strapdown inertial navigation system (SINS) using Doppler shift measurements obtained from single or multi-constellation LEO satellites and a rotation technique applied on the inertial measurement unit (IMU). Firstly, a regular Doppler positioning algorithm based on the extended Kalman filter (EKF) calculates states of the receiver. This system is considered as a slave block. In parallel, a master INS estimates the position, velocity, and attitude of the system. Secondly, the linearized state space model of the INS errors is formulated. The alignment model accounts for obtaining the errors of the INS by a Kalman filter. The measurements of this system are the difference in the outputs from the master and slave systems. Thirdly, as the observability rank of the system is not sufficient for estimating all the parameters, a discrete dual-axis IMU rotation sequence was simulated. By increasing the observability rank of the system, all the states were estimated. Two experiments were performed with different overhead satellites and numbers of constellations: one for a ground vehicle and another for a small flight vehicle. Finally, the results showed a significant improvement compared to stand-alone INS and the regular Doppler positioning method. The error of the ground test reached around 26 m. This error for the flight test was demonstrated in different time intervals from the starting point of the trajectory. The proposed method showed a 180% accuracy improvement compared to the Doppler positioning method for up to 4.5 min after blocking the GNSS.


2018 ◽  
Vol 71 (4) ◽  
pp. 769-787 ◽  
Author(s):  
Ahmed El-Mowafy

Real-time Precise Point Positioning (PPP) relies on the use of accurate satellite orbit and clock corrections. If these corrections contain large errors or faults, either from the system or by meaconing, they will adversely affect positioning. Therefore, such faults have to be detected and excluded. In traditional PPP, measurements that have faulty corrections are typically excluded as they are merged together. In this contribution, a new PPP model that encompasses the orbit and clock corrections as quasi-observations is presented such that they undergo the fault detection and exclusion process separate from the observations. This enables the use of measurements that have faulty corrections along with predicted values of these corrections in place of the excluded ones. Moreover, the proposed approach allows for inclusion of the complete stochastic information of the corrections. To facilitate modelling of the orbit and clock corrections as quasi-observations, International Global Navigation Satellite System Service (IGS) real-time corrections were characterised over a six-month period. The proposed method is validated and its benefits are demonstrated at two sites using three days of data.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2835 ◽  
Author(s):  
Bo Chen ◽  
Chengfa Gao ◽  
Yongsheng Liu ◽  
Puyu Sun

The Global Navigation Satellite System (GNSS) positioning technology using smartphones can be applied to many aspects of mass life, and the world’s first dual-frequency GNSS smartphone Xiaomi MI 8 represents a new trend in the development of GNSS positioning technology with mobile phones. The main purpose of this work is to explore the best real-time positioning performance that can be achieved on a smartphone without reference stations. By analyzing the GNSS raw measurements, it is found that all the three mobile phones tested have the phenomenon that the differences between pseudorange observations and carrier phase observations are not fixed, thus a PPP (precise point positioning) method is modified accordingly. Using a Xiaomi MI 8 smartphone, the modified real-time PPP positioning strategy which estimates two clock biases of smartphone was applied. The results show that using multi-GNSS systems data can effectively improve positioning performance; the average horizontal and vertical RMS positioning error are 0.81 and 1.65 m respectively (using GPS, BDS, and Galileo data); and the time required for each time period positioning errors in N and E directions to be under 1 m is less than 30s.


2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Sakpod Tongleamnak ◽  
Masahiko Nagai

Performance of Global Navigation Satellite System (GNSS) positioning in urban environments is hindered by poor satellite availability because there are many man-made and natural objects in urban environments that obstruct satellite signals. To evaluate the availability of GNSS in cities, this paper presents a software simulation of GNSS availability in urban areas using a panoramic image dataset from Google Street View. Photogrammetric image processing techniques are applied to reconstruct fisheye sky view images and detect signal obstacles. Two comparisons of the results from the simulation and real world observation in Bangkok and Tokyo are also presented and discussed for accuracy assessment.


2011 ◽  
Vol 130-134 ◽  
pp. 2890-2893 ◽  
Author(s):  
Xiao Guang Wan ◽  
Xing Qun Zhan

Pseudolites are ground-based transmitters that send global navigation satellite system like signals, such as GPS, GLONASS, or Galileo. As an independent system for indoor positioning, pseudolites technique can be explored for a wide range of positioning and navigation application where the signal of satellite GNSS can’t be received. However, with indoor environment, the positioning method of pseudolite navigation system is not entirely same as GNSS, and there are some challenging issues in research and system design. In this paper, a signal difference carrier phase measurement system with pseudolites is design. Furthermore, two major problems are studied that they are multipath error and linear errors.


2021 ◽  
Vol 14 (1) ◽  
pp. 44
Author(s):  
Kan Wang ◽  
Ahmed El-Mowafy ◽  
Weijin Qin ◽  
Xuhai Yang

Nowadays, integrity monitoring (IM) is required for diverse safety-related applications using intelligent transport systems (ITS). To ensure high availability for road transport users for in-lane positioning, a sub-meter horizontal protection level (HPL) is expected, which normally requires a much higher horizontal positioning precision of, e.g., a few centimeters. Precise point positioning-real-time kinematic (PPP-RTK) is a positioning method that could achieve high accuracy without long convergence time and strong dependency on nearby infrastructure. As the first part of a series of papers, this contribution proposes an IM strategy for multi-constellation PPP-RTK positioning based on global navigation satellite system (GNSS) signals. It analytically studies the form of the variance-covariance (V-C) matrix of ionosphere interpolation errors for both accuracy and integrity purposes, which considers the processing noise, the ionosphere activities and the network scale. In addition, this contribution analyzes the impacts of diverse factors on the size and convergence of the HPLs, including the user multipath environment, the ionosphere activity, the network scale and the horizontal probability of misleading information (PMI). It is found that the user multipath environment generally has the largest influence on the size of the converged HPLs, while the ionosphere interpolation and the multipath environments have joint impacts on the convergence of the HPL. Making use of 1 Hz data of Global Positioning System (GPS)/Galileo/Beidou Navigation Satellite System (BDS) signals on L1 and L5 frequencies, for small- to mid-scaled networks, under nominal multipath environments and for a horizontal PMI down to , the ambiguity-float HPLs can converge to 1.5 m within or around 50 epochs under quiet to medium ionosphere activities. Under nominal multipath conditions for small- to mid-scaled networks, with the partial ambiguity resolution enabled, the HPLs can converge to 0.3 m within 10 epochs even under active ionosphere activities.


2021 ◽  
Vol 14 (1) ◽  
pp. 128
Author(s):  
Bing Xue ◽  
Yunbin Yuan ◽  
Han Wang ◽  
Haitao Wang

Global Navigation Satellite System (GNSS) Precise Point Positioning (PPP) is an attractive positioning technology due to its high precision and flexibility. However, the vulnerability of PPP brings a safety risk to its application in the field of life safety, which must be evaluated quantitatively to provide integrity for PPP users. Generally, PPP solutions are processed recursively based on the extended Kalman filter (EKF) estimator, utilizing both the previous and current measurements. Therefore, the integrity risk should be qualified considering the effects of all the potential observation faults in history. However, this will cause the calculation load to explode over time, which is impractical for long-time missions. This study used the innovations in a time window to detect the faults in the measurements, quantifying the integrity risk by traversing the fault modes in the window to maintain a stable computation cost. A non-zero bias was conservatively introduced to encapsulate the effect of the faults before the window. Coping with the multiple simultaneous faults, the worst-case integrity risk was calculated to overbound the real risk in the multiple fault modes. In order to verify the proposed method, simulation and experimental tests were carried out in this study. The results showed that the fixed and hold mode adopted for ambiguity resolution is critical to an integrity risk evaluation, which can improve the observation redundancy and remove the influence of the biased predicted ambiguities on the integrity risk. Increasing the length of the window can weaken the impact of the conservative assumption on the integrity risk due to the smoothing effect of the EKF estimator. In addition, improving the accuracy of observations can also reduce the integrity risk, which indicates that establishing a refined PPP random model can improve the integrity performance.


Sign in / Sign up

Export Citation Format

Share Document