scholarly journals Oxidised Biochar from Palm Kernel Shell for Eco-friendly Pollution Management

2020 ◽  
Vol 17 (2) ◽  
pp. 45
Author(s):  
Sylbialin Amin ◽  
Robert Thomas Bachmann ◽  
Soon Kong Yong

Oil palm plantations produce palm kernel shell (PKS) that can be converted into biochar for environment-friendly soil remediation and water treatment. Oxidation with hydrogen peroxide (H2O2) may enhance surface characteristics and the quality of low-rank PKS biochar as a sorbent for environmental decontamination. This study aims to determine the effect of oxidation on the surface characteristics (i.e., specific surface area, surface charge, and chemical properties) of PKS biochar, and compared with that of PKS activated carbon. The surface area for the oxidised PKS biochar was similar to that of PKS biochar, indicating that oxidation did not remove the pore blocking material from the surface area of the PKS biochar. However, oxidation has increased the amount of negatively charged oxygen functional groups in PKS biochar, as indicated by the analyses of the Fourier transform infrared spectroscopy (FTIR) and cation exchange capacity (CEC). The CEC value of raw and activated PKS biochar were similar and 4.6 and 2.6 times lower for PKS biochar and oxidised PKS biochar, respectively. Oxidation caused enlargement of pores on PKS biochar and caused a reduction of specific surface area. More research is required to establish the process conditions to create a greater surface area and sorption capacity.

2015 ◽  
Vol 75 (1) ◽  
Author(s):  
Lee Lin Zhi ◽  
Muhammad Abbas Ahmad Zaini

This work was aimed to evaluate the adsorptive characteristics of potassium carbonate-treated palm kernel shell adsorbent for the removal of congo red from water. The adsorbent was characterized according to the specific surface area, surface morphology and surface functional groups. The bottle-point technique was employed to investigate the equilibrium uptake and the adsorption kinetics of congo red, and the removal mechanisms were proposed from the widely used isotherm and kinetics models. Results show that the specific surface area of adsorbent increased after the treatment rendering the maximum congo red uptake of 8.0 mg/g. The removal of congo red obeyed Langmuir isotherm and pseudo-second-order kinetics model suggesting the chemically-attributed homogeneous adsorption. Regeneration of congo red-loaded adsorbent by irradiated water showed a better regeneration efficiency of 82%. Palm kernel shell is a promising adsorbent candidate for congo red removal from water.


Catalysts ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Velma Beri Kimbi Yaah ◽  
Satu Ojala ◽  
Hamza Khallok ◽  
Tiina Laitinen ◽  
Marcin Selent ◽  
...  

This paper presents results related to the development of a carbon composite intended for water purification. The aim was to develop an adsorbent that could be regenerated using light leading to complete degradation of pollutants and avoiding the secondary pollution caused by regeneration. The composites were prepared by hydrothermal carbonization of palm kernel shells, TiO2, and W followed by activation at 400 °C under N2 flow. To evaluate the regeneration using light, photocatalytic experiments were carried out under UV-A, UV-B, and visible lights. The materials were thoroughly characterized, and their performance was evaluated for diclofenac removal. A maximum of 74% removal was observed with the composite containing TiO2, carbon, and W (HCP25W) under UV-B irradiation and non-adjusted pH (~5). Almost similar results were observed for the material that did not contain tungsten. The best results using visible light were achieved with HCP25W providing 24% removal of diclofenac, demonstrating the effect of W in the composite. Both the composites had significant amounts of oxygen-containing functional groups. The specific surface area of HCP25W was about 3 m2g−1, while for HCP25, it was 160 m2g−1. Increasing the specific surface area using a higher activation temperature (600 °C) adversely affected diclofenac removal due to the loss of the surface functional groups. Regeneration of the composite under UV-B light led to a complete recovery of the adsorption capacity. These results show that TiO2- and W-containing carbon composites are interesting materials for water treatment and they could be regenerated using photocatalysis.


Author(s):  
N.B. Sarsenbayev ◽  
◽  
B.K. Sarsenbayev ◽  
Zh.T. Aimenov ◽  
A.Zh. Aimenov ◽  
...  

Considering the physical chemistry of grinding it is worth quoting the grinding of mineral building material as “the change of physical-chemical properties of finely ground materials can not only be due to the reducing the particle sizes, at mechanical grinding significant changes of the crystalline structure of their surface layers (thickness 15-20 microns) take place, in many cases the technological properties of fine powders are not so much due to dispersability but are namely due to the structure rupture”, at that the energy costs for this are “significantly greater than for the exposal of surfaces with a clean cleavage”. The speed of heterogeneous chemical processes involving fine powders is determined primarily not by the magnitude of their specific surface area, as commonly is believed, but by the decrease of energy of activation as the result of crystalline structure rupture and amorphization. However, both specific surface area and energy demands to achieve are actual evaluation of the effectiveness of any material grinding at a particular unit. The main factor of the production process of cements of low water demand is the grinding, characterized by grindability.


Paliva ◽  
2020 ◽  
pp. 155-161
Author(s):  
Tomáš Hlinčík ◽  
Veronika Šnajdrová ◽  
Veronika Kyselová

Alumina is commonly used in industrial practice as a catalyst support and it is made from boehmite. Depending on the calcination temperature, this mineral is transformed into various crystalline modifications which have different physical and chemical properties. For this reason, the following parameters were determined at different calcination temperatures: length, width, material hardness, specific surface area and total pore volume. The results show that with increasing calcination temperature there have been significant changes which may be important when using the material as a catalyst support, e.g. in the preparation of catalysts or in the design of cat-alytic reactors. The specific surface area, which decreases in the temperature range 450–800 °C, is an important parameter for the preparation of catalysts, so it is appropriate to choose a temperature of 600 °C, when the specific surface area is above 200 m2·g-1. The effect of calcination temperature on the structural transitions of boehmite was also monitored. The results showed that γ-Al2O3 has the most suitable properties as a catalyst sup-port in the temperature range 450–800 °C.


2019 ◽  
Vol 26 (1) ◽  
pp. 99-102
Author(s):  
Dāvis CONKA ◽  
Līga AVOTINA ◽  
Ruta SVINKA ◽  
Visvaldis SVINKA ◽  
Laris BAUMANE ◽  
...  

Natural clay is a perspective material for application as sorbents for wastewater treatment as well as for sorption of radionuclides, where the properties of the clays can be changed under influence of ionizing radiation. For application of Latvian illite/kaolinite clays for isotope sorption it is important to characterize the physic-chemical properties of pre-prepared air dried clays. Two fractions of the illite clays were selected. A fraction with grain size 100 μm (SiO2 content 60.9 ± 1.5 wt.%, specific surface area 35 m2/g) and a sand free fraction – 2 μm (SiO2 47.7 ± 1.9 wt.%, specific surface area 38 m2/g). Selected fractions were irradiated with accelerated electrons (5 MeV, ELU-4, Salaspils, absorbed dose up to 500 kGy). Non-irradiated and irradiated clays were analysed with means of Fourier transform infrared (FT-IR) spectrometry.  


1986 ◽  
Vol 86 ◽  
Author(s):  
R. C. Joshi ◽  
B. K. Marsh

ABSTRACTThis paper gives physical and chemical properties of some Canadian fly ashes. Specific surface area, magnetic fraction, water soluble fraction and fraction finer than 45 μm were determined as part of the physical tests. Thermo-gravimetric analyses (TGA) in oxygen and nitrogen were conducted on raw ash samples. The change of pH with time in suspensions of the different ashes in water was also determined. Pozzolanic activity of the ashes with lime for all the ashes was evaluated to measure ash reactivity.The ash activity seems to be related to fineness of the ash measured by the Blaine air permeability method, but not to the fineness measured by nitrogen sorption. Generally the greater the specific surface area, the higher the reactivity of the ash. The correlation was, however, not strong and no other physical or chemical parameter measured in this investigation seems to be related to pozzolanic activity.The results of pH and TGA tests indicated that the ashes differ in many respects from each other. The TGA data suggest that loss on-ignition in many of the ashes is not entirely due to the presence of unburned carbon. Specific surface area determined by various methods seems to provide different values. No characterization parameter was found that was uniquely related to coal type.


Clay Minerals ◽  
2019 ◽  
Vol 54 (4) ◽  
pp. 369-377 ◽  
Author(s):  
Maja Milošević ◽  
Predrag Dabić ◽  
Sabina Kovač ◽  
Lazar Kaluđerović ◽  
Mihovil Logar

AbstractThis study focuses on the mineralogical characterization of four raw clay samples from Dobrodo deposit, Serbia. Several analytical methods were applied to determine the chemical and mineralogical composition, morphology and physical properties (colour, plasticity, specific surface area, particle size and cation-exchange capacity) of the clay samples. Kaolinite, smectite and illite are the predominant phases in all of the samples studied that contain between 60.2 and 87.1 wt.% of clay. Quartz, feldspars, paragonite and Ti- and Fe-bearing phases were also identified. The relatively high SiO2/Al2O3 mass ratio indicates abundant quartz. The cation-exchange capacity of the samples varied between low and moderately charged clay minerals (12–52 mmol 100 g–1) with specific surface area values ranging from 94 to 410 m2 g–1. The plasticity index values (11–23%) suggest low to moderate plasticity. Preliminary results show that most of the raw clay from Dobrodo deposit might be suitable for use in ceramic applications.


2011 ◽  
Vol 485 ◽  
pp. 137-140 ◽  
Author(s):  
Kenichi Myoujin ◽  
Hiroki Ichiboshi ◽  
Takayuki Kodera ◽  
Takashi Ogihara

Spherical samarium doped ceria (Ce0.8Sm0.2O1.9, SDC) powders having high specific surface area (SSA) were successfully synthesized by carbon-assisted spray pyrolysis (CASP). Saccharides, such as monosaccharides and disaccharides, or organic acids were used as carbon sources. The physical and chemical properties of these powders were investigated using X-ray diffraction (XRD), scanning electron microscopy (SEM), Thermo gravimetry-Differential Thermal Analysis (TG-DTA), and BET. Decarbonized powders obtained by this method exhibit spherical morphologies and nano- and submicron-sizes. The SSA of SDC obtained from CASP was more than seven times higher than that obtained from conventional spray pyrolysis (CSP). The SSA of the decarbonized SDC powders obtained by calcination at 900 °C was estimated to be approximately 70 m2/g by using the BET method. The relative density of SDC obtained from CASP was higher than that obtained from CSP. The relative density of the SDC pellet was highest (96 %) when it was sintered at 1400 °C.


2017 ◽  
Vol 4 (2) ◽  
pp. 195-204 ◽  
Author(s):  
Norulaina Aliasa ◽  
Muhammad Abbas Ahmad Zaini ◽  
Mohd. Johari Kamaruddin

The present work was aimed to evaluate the effectiveness of two activating agents, namely potassium carbonate (K2CO3) and sodium hydroxide (NaOH) in the chemical activation of palm kernel shell (PKS). The adsorbents were prepared by dried impregnation at different solid mass ratios of activating agent to precursor, followed by thermal treatment at 500°C for 2 h. The adsorbents were characterized for specific surface area, carbon content, ash content and surface functional groups. Results show that the specific surface of K2CO3-activated samples are in the range of 5.3 to 53 m2/g, while that of NaOH-activated samples are between 145 and 458 m2/g. The removal of methylene blue is in accordance with the development of surface area of adsorbents, with the maximum capacity between 7.8 and 69 mg/g, and fitted well with the Langmuir isotherm. The findings conclude that, under the thermal conditions studied, NaOH is better than K2CO3 in the chemical activation of PKS.


Sign in / Sign up

Export Citation Format

Share Document