scholarly journals Physical Properties of Different Thicknesses ZnO Thin Films Prepared via Sol-gel Spin Coating Technique

2021 ◽  
Vol 18 (2) ◽  
pp. 147-160
Author(s):  
Rohanieza Abdul Rahman ◽  
◽  
Muhammad AlHadi Zulkefle ◽  
Sukreen Hana Herman ◽  
Rosalena Irma Alip ◽  
...  

This paper presents the investigation of the thickness of the ZnO thin films by varying the number of deposition layers during the spin coating deposition process. ZnO thin films were deposited with a different number of layers (ranging from 1, 3, and 5), and the main purpose of this study is to explore the effect of the thickness on the properties of ZnO thin films. The deposited thin films were characterised using field emission scanning electron microscope, surface profilometer, and X-ray diffraction. From the characterisation results, the morphology of the ZnO thin films changed significantly with the number of layers and their thickness value. As expected, the thickness increased as the number of layers increased. The crystalline quality of the deposited film improved as the thickness increased. A change in crystallographic orientation was also observed in which the thicker, thin films showed crystal growth in the (102) direction, whereas the thinner one was in the (101) direction. A slight increase in crystallite size for dominant orientation also was observed with the increase of film thickness.

2002 ◽  
Vol 737 ◽  
Author(s):  
R.E. Melgarejo ◽  
M.S. Tomar ◽  
A. Hidalgo ◽  
R.S. Katiyar

ABSTRACTNd substituted bismuth titanate Bi4-xNdxTi3O12 were synthesized by sol-gel process and thin films were deposited on Pt substrate (Pt/TiO2/SiO2/Si) by spin coating. Thin films, characterized by X-ray diffraction and Raman spectroscopy, shows complete solid solution up to the composition x < 1. Initial results indicate that the ferroelectric polarization increases with increasing Nd content in the film with 2Pr = 50μC/cm2 for x = 0.46, which may have application in non-volatile ferroelectric memory devices.


2010 ◽  
Vol 93-94 ◽  
pp. 231-234
Author(s):  
B. Hongthong ◽  
Satreerat K. Hodak ◽  
Sukkaneste Tungasmita

Strontium substituted hydroxyapatite(SrHAp) were fabricated both in the form of powder as reference and thin film by using inorganic precursor reaction. The sol-gel process has been used for the deposition of SrHAp layer on stainless steal 316L substrate by spin coating technique, after that the films were annealed in air at various temperatures. The chemical composition of SrHAp is represented (SrxCa1-x)5(PO4)3OH, where x is equal to 0, 0.5 and 1.0. Investigations of the phase structure of SrHAp were carried out by using X-ray diffraction technique (XRD). The results showed that strontium is incorporated into hydroxyapatite where its substitution for calcium increases in the lattice parameters, and Sr3(PO4)2 can be detected at 900°C. The SEM micrographs showed that SrHAp films exhibited porous structure before develop to a cross-linking structure.


2014 ◽  
Vol 32 (4) ◽  
pp. 688-695 ◽  
Author(s):  
Munirah Munirah ◽  
Ziaul Khan ◽  
Mohd. Khan ◽  
Anver Aziz

AbstractThis paper describes the growth of Cd doped ZnO thin films on a glass substrate via sol-gel spin coating technique. The effect of Cd doping on ZnO thin films was investigated using X-ray diffraction (XRD), UV-Vis spectroscopy, photoluminescence spectroscopy, I–V characteristics and field emission scanning electron microscopy (FESEM). X-ray diffraction patterns showed that the films have preferred orientation along (002) plane with hexagonal wurtzite structure. The average crystallite sizes decreased from 24 nm to 9 nm, upon increasing of Cd doping. The films transmittance was found to be very high (92 to 95 %) in the visible region of solar spectrum. The optical band gap of ZnO and Cd doped ZnO thin films was calculated using the transmittance spectra and was found to be in the range of 3.30 to 2.77 eV. On increasing Cd concentration in ZnO binary system, the absorption edge of the films showed the red shifting. Photoluminescence spectra of the films showed the characteristic band edge emission centred over 377 to 448 nm. Electrical characterization revealed that the films had semiconducting and light sensitive behaviour.


2012 ◽  
Vol 485 ◽  
pp. 144-148
Author(s):  
Jian Lin Chen ◽  
Yan Jie Ren ◽  
Jian Chen ◽  
Jian Jun He ◽  
Ding Chen

Preferentially oriented Al-doped ZnO thin films with doping concentration of 1, 2, 3, 5 and 10 mol% respectively were prepared on glass substrates via sol-gel route. The crystallinity of films was characterized by X-ray diffraction and the surface morphologies were observed by scanning electron microscopy. The results show that ZnO:Al films at low doping concentration (1, 2 mol%) grow into dense homogenous microstructure. However, as for high doping concentration (3, 5, 10 mol%), Al3+ precipitate in the form of amorphous Al2O3 and ZnO:Al films exhibit heterogeneous nucleation and exceptional growth of the big plate-like crystals at the interface of the amorphous Al2O3 and ZnO:Al matrix.


2017 ◽  
Vol 05 (01) ◽  
pp. 1750004
Author(s):  
R. Vettumperumal ◽  
S. Kalyanaraman ◽  
R. Thangavel

Nanocrystalline ruthenium (Ru)-doped ZnO thin films on sapphire substrate was prepared using sol–gel method by spin coating technique. The structural and I-V characteristics of Ru doped ZnO thin films were studied from the X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) analysis and Raman spectroscopy. X-ray diffraction (XRD) results revealed that the deposited films belonged to hexagonal wurtzite structure with c-axis orientation. It is also confirmed from the Raman spectra. Enhancement of longitudinal optical (LO) phonon is observed by the strong electron–phonon interaction. An observed increment in sheet resistance with increase in dopant percentage of Ru (1–2[Formula: see text]mol%) in ZnO films was found and better I-V characteristic behavior was observed at 1[Formula: see text]mol% of Ru-doped ZnO thin films. Trap limited current flow inside the material was calculated from the log I versus log V plot in the higher voltage region.


2016 ◽  
Vol 694 ◽  
pp. 120-124 ◽  
Author(s):  
Nurul Azuwa Azmi ◽  
Umar Al Amani Azlan ◽  
Maziati Akmal Mohd Hatta ◽  
Mohd Asyadi' Azam Mohd Abid ◽  
Mohd Warikh Ab Rashid

(K, Na)NbO3 (KNN) thin films were prepared by sol-gel technique. Spin coating deposition and rapid thermal annealing (RTP) process were applied to produce the KNN thin films. The films obtained demonstrated that highly crystallographic orientation was produced at five layer deposition with increase (preferred orientation) peak at (1 1 1). The thickness of five layers thin films observed by field emission scanning electron microscopy (FE-SEM) was determined to be ~200nm. However, the inhomogeneous distribution of KNN particles was detected in KNN thin films. The distribution of KNN elements was confirmed by energy-dispersive X-ray (EDX) spectra. Improvement was observed in resistivity (2.71-7.81x106 Ω.cm) and dielectric loss (0.35%-0.21%) following the increasing number of layers.


2013 ◽  
Vol 734-737 ◽  
pp. 2328-2331
Author(s):  
Yu Fei You ◽  
C.H. Xu ◽  
Jing Zhe Wang ◽  
Jun Peng Wang

Sol-gel method is used for the formation of Pb0.499Sr0.499TiO3 (PST)thin films. The initial films were prepared with spin coating sol solution on silicon wafer and drying at room temperature and then heating coated dry sol film at 400°C for 10min. This process was repeated for 1-4 times to obtain 4 initial films with different thicknesses. The 4 initial films were annealed at 700°C for 2h to obtain PST ceramics films. The morphologies of the surface and cross-section of PST films were observed with a scanning electronic microscope (SEM). The phase structures of PST films were analyzed using X-ray diffraction meter (XRD). Experimental results show that PST film prepared by coating sol on silicon with different thicknesses can be high smooth,uniform and compact film.


2003 ◽  
Vol 785 ◽  
Author(s):  
R. Guzman ◽  
M.S. Tomar ◽  
R.E. Melgarejo

ABSTRACTThere is a great deal of interest in CaCu3Ti4O12 system for dielectric applications. We have studied Ca1-xSrxCu3Ti4O12 system for different compositions. The material is synthesized by sol-gel chemical solution route and thin films were deposited by spin coating. Thin films were investigated by x-ray diffraction and Raman spectroscopy for structural properties. These results indicate a solid solution for the compositions x = 0.00 to 0.80. The SEM micrographs shows the uniform films at 800° C, but the dielectric response of Ca1-xSrxCu3Ti4O12 (x = 0.00) shows the dielectric constant value below 200.


2013 ◽  
Vol 795 ◽  
pp. 403-406 ◽  
Author(s):  
Nur Sa’adah Muhamad Sauki ◽  
Sukreen Hana Herman ◽  
Mohd Hanafi Ani ◽  
Mohamad Rusop

Zinc oxide (ZnO) thin films were deposited on teflon substrates by RF magnetron sputtering at different substrate temperature. The effect of substrate temperature on ZnO thin films electrical and structural properties were examined using current-voltage (I-V) measurement, and x-ray diffraction (XRD) It was found that the electrical conductivity and resistivity of the ZnO thin film deposited at 40°C was the highest and lowest intensity accordingly. This was supported by the crystalline quality of the films from the x-ray diffraction (XRD) results. The XRD pattern showed that the ZnO thin film deposited at 40°C has the highest intensity with the narrowest full-width-at-half-maximum indicating that the film has the highest quality compared to other thin film.


2015 ◽  
Vol 819 ◽  
pp. 189-192
Author(s):  
Dewi Suriyani Che Halin ◽  
Ibrahim Abu Talib ◽  
Abdul Razak Daud ◽  
Muhammad Azmi Abd Hamid

Thin films of copper oxide were successively deposited on glass substrates by sol-gel like spin coating for 40 s and annealed in air at different temperatures (200-400°C). Precursor solutions were prepared by dissolving cupric chloride in methanol. Various stabilizers and additives were used to enhance the solubility of cupric chloride and to improve the adhesion between the films and the glass substrates. Glucopone was used as a surfactant to reduce the surface energy. The evolution of oxide coatings under thermal treatment was studied by glancing incidence X-ray diffraction and scanning electron microscopy. Annealing the films in air at 300°C converts the films to CuO. The general appearances of the films were uniform and brownish in color.


Sign in / Sign up

Export Citation Format

Share Document