scholarly journals Selection and Assessment of Passive Cooling Techniques for Residential Buildings in Oman Using a Bioclimatic Approach

2013 ◽  
Vol 10 (2) ◽  
pp. 52 ◽  
Author(s):  
N Al-Azri ◽  
YH Zurigat ◽  
N Al-Rawahi

 Passive cooling is an ancient technique used in air reconditioning and ventilation. Despite its historical use, its relevance in building design has never ceased. To be sure, with the increasing interest in saving energy and preserving the environment, passive cooling stands out as a sustainable possibility. However, this is not always a viable option, and its practicality is determined mainly by the system's functionality, the type of activities involved in the space to be cooled, and the surrounding area's bioclimatic variables (i.e. temperature, humidity, and diurnal temperature differences). In areas under consideration for passive cooling systems, bioclimatic charts are helpful. Comprehensive charts, in which yearlong hourly meteorological data are projected on a psychrometric chart, help to determine the fits required by a particular location. In this paper, psychrometric charts were developed for eight locations in Oman, and a systematic procedure on the selection and viability of using passive cooling techniques is provided through meteorological data. Givoni's passive cooling zones are used and the applicability of each technique is quantified. The eight study locations are widely scattered around and Oman, and possess great geographical diversity. The presented results can help delineate the applicability of each passive cooling technique for residential buildings at each of the study locations and their proximities. 

2017 ◽  
Vol 14 (2) ◽  
pp. 137
Author(s):  
Nasser Al-Azri ◽  
Y. Zurigat ◽  
N. Al-Rawahi

Bioclimatic charts are used by engineers and architects in implementing passive cooling systems and architectural optimization with respect to natural air conditioning. Conventionally, the development of these charts is based on the availability of typical meteorological year which requires a record of meteorological data that are rarely available in sufficient amounts. Bioclimatic charts in Oman were developed earlier by the authors for limited locations based on the available typical meteorological years. Using dry bulb and dew point temperatures only, bioclimatic charts are developed for Adam, Buraimi, Ibra, Muscat, Nizwa, Rustaq, Saiq, Salalah, Suhar and Sur. These charts are better representative of bioclimatic trends since their development is mainly based on the relevant parameters, namely dry bulb temperature and dew point.


Author(s):  
Alaa Alaidroos ◽  
Moncef Krarti

In this paper, passive cooling strategies have been investigated to evaluate their effectiveness in reducing cooling thermal loads and air conditioning energy consumption for residential buildings in Kingdom of Saudi Arabia (KSA). Specifically, three passive cooling techniques have been evaluated including: natural ventilation, downdraft evaporative cooling, and earth tube cooling. These passive cooling systems are applied to a prototypical KSA residential villa model with an improved building envelope. The analysis has been carried using detailed simulation tool for several cities representing different climate conditions throughout KSA. It is found that both natural ventilation and evaporative cooling provide a significant reduction in cooling energy for the prototypical villa located in Riyadh. Natural ventilation alone has reduced the cooling energy end-use by 22% and the total villa energy consumption by 10%, while the evaporative cooling system has resulted in 64% savings in cooling energy end-use and 32% in the total villa energy consumption. When applying both passive cooling systems together to the villa, the cooling energy end-use is significantly reduced by about 84.2% and the total villa energy savings by 62.3% relative to the un-insulated basecase residential building model. Moreover, natural ventilation is found to have a high potential in all KSA climates, while evaporative cooling can be suitable only in hot and dry climates such as Riyadh and Tabuk.


2016 ◽  
Vol 138 (3) ◽  
Author(s):  
Alaa Alaidroos ◽  
Moncef Krarti

In this paper, passive cooling strategies have been investigated to evaluate their effectiveness in reducing cooling thermal loads and air conditioning energy consumption for residential buildings in Kingdom of Saudi Arabia (KSA). Specifically, three passive cooling techniques have been evaluated including natural ventilation, downdraft evaporative cooling, and earth tube cooling. These passive cooling systems are applied to a prototypical KSA residential villa model with an improved building envelope. The analysis has been carried using detailed simulation tool for several cities representing different climate conditions throughout KSA. The impact of the passive cooling systems is evaluated on both energy consumption and electrical peak demand for residential villas with and without improved building envelope for five cities, representatives of various climate conditions in KSA. It is found that both natural ventilation and evaporative cooling provide a significant reduction in cooling energy use and electrical peak demand for the prototypical villa located in dry KSA climates such as that of Riyadh and Tabuk. Natural ventilation alone has reduced the cooling energy end-use by 22%, while the evaporative cooling system has resulted in 64% savings in cooling energy end-use. Moreover, the natural ventilation is found to have a high potential in all KSA climates, while evaporative cooling can be suitable only in hot and dry climates such as Riyadh and Tabuk. Finally, the analysis showed that natural ventilation provided the lowest electrical peak demand when applied into the improved envelope residential buildings in all five cities in KSA.


Energies ◽  
2022 ◽  
Vol 15 (1) ◽  
pp. 369
Author(s):  
Ebrahim Morady ◽  
Madjid Soltani ◽  
Farshad Moradi Kashkooli ◽  
Masoud Ziabasharhagh ◽  
Armughan Al-Haq ◽  
...  

The effectiveness of using wetted cellulose pads on improving the performance of two conventional passive cooling systems has been evaluated. First, an experimental design was developed to determine the impact of using a wetted cellulose pad on the temperature and velocity of the airflow. A cellulose pad (7090 model) with a cross-sectional area of 0.5 × 0.5 m2 and three different thicknesses of 10, 15, and 30 cm were selected and tested. The results indicated that using wetted cellulose pads with thicknesses ranging from 10–30 cm decreased the outlet airflow temperature from 11.3 to 13.7 °C on average. For free airflow at velocity 3.5 m/s, the outlet airflow velocity from the wetted cellulose pad decreased to 0.9, 0.7 and 0.6 m/s, respectively, for cellulose pads with thicknesses of 10, 15, and 30 cm. By applying experimental results on a psychrometric chart, the humidity ratio of outlet airflow was obtained between 40–70%. The study established airflow velocity as the critical parameter in passive cooling systems. With the novel concept of combining wetted cellulose pads for passive cooling systems (i.e., wind catchers and induced ventilation), there is good potential to reduce the energy requirements for thermal comfort in buildings in regions with a hot and arid climate.


2022 ◽  
Vol 27 ◽  
pp. 932-944
Author(s):  
Ibtissame Benoudjafer

Abstract. Practice social of people is the key to produce space and give a possibility to maintain thermal comfort and energy efficiency. The main objective of this research is to adapt the traditional strategies in the architecture actual, to achieved a thermal comfort and improve on reducing cooling load through the using of vernacular gait. Today, it is necessary to practice these systems in the current or conventional architecture of household. The study is especially for arid cities namely the region of Saoura, in the hot and dry climatic zone in Algeria, considered for this study. Two main factors is considered such as design and urban where taken into account in order to select the appropriate and specific passive cooling strategy. The results show that the passive cooling strategy of courtyard would be appropriate for arid regions, however a high thermal mass would be suitable for construction. In conclusion, this work made it possible to choose a suitable passive cooling strategy for all types of construction in hot and dry climates. Finally, this paper puts forward a set of recommendations to improve the passive design of future buildings in hot and arid climates.  


2021 ◽  
Vol 5 (2) ◽  
pp. 177
Author(s):  
Inggit Musdinar Sayekti Sihing Yang Mawantu ◽  
Sri Kurniasih

Abstract: Subground passive cooling is a passive cooling technique that is carried out by flowing cold air in the ground into the room. The Pasio Christi Church in Cibunut, Kuningan, West Java was founded in 1965. Then the church implemented a passive cooling subground system through renovations carried out on May 11, 2018. This passive cooling system is usually carried out in areas with subtropical to cold climates, however Cibunut who has a tropical climate tries to implement this system. In fact, there is concern if the system is implemented in the tropics, such as humidity entering the system, causing fungal problems that can have an impact on health. . Therefore this research describes the application of the subground passive cooling system in tropical climates with the following steps: (i) data collection in the form of literature studies, (ii) identification of the subground passive cooling system of Cibunut Church, (iii) elaboration of theory regarding subground passive cooling, (iv) analysis of the application of subground passive cooling of the Cibunut church with the results of theoretical elaboration. This research is expected to be able to contribute in science, especially regarding the application of subground passive cooling systems in tropical climates.Abstrak: Subground passive cooling merupakan teknik pendinginan pasif yang dilakukan dengan mengalirkan udara dingin dalam tanah ke dalam ruangan. Gereja Pasio Christi di Cibunut, Kuningan, Jawa Barat didirikan sejak 1965. Lalu gereja ini menerapkan sistem subground passive cooling melalui renovasi yang dilakukan pada 11 Mei 2018. Sistem pendinginan pasif ini biasanya dilakukan pada wilayah dengan iklim subtropis hingga iklim dingin, namun demikian Cibunut yang beriklim tropis mencoba untuk menerapkan sistem ini. Padahal ada kekawatiran jika sistem ini diterapkan di wilayah tropis, seperti kelembaban yang masuk dalam sistem sehingga muncul permasalahan jamur yang dapat berdampak pada kesehatan. Oleh karena itu pada penelitian ini mendiskripsikan mengenai penerapan sistem subground passive cooling pada wilayah beriklim tropis dengan langkah-langkah sebagai berikut : (i) pengumpulan data dalam bentuk studi literatur, (ii) identifikasi sistem subground passive cooling Gereja Cibunut, (iii) elaborasi teori mengenai subground passive cooling, (iv) analisis penerapan subground passive cooling gereja Cibunut dengan hasil elaborasi teori. Dari penelitian ini diharapkan mampu memberikan sumbangsih dalam keilmuan terutama mengenai penerapan sistem subground passive cooling pada wilayah beriklim tropis.


Sign in / Sign up

Export Citation Format

Share Document