scholarly journals Performance Evaluation of Low-Cost and Real-Time Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis-Precise Point Positioning (MADOCA-PPP) Receiver Systems

2020 ◽  
Vol 8 (3) ◽  
Author(s):  
Ellariza Fredeluces ◽  
Arthur Rey Lagura ◽  
Rosalie Reyes ◽  
Nobuaki Kubo

With Multi-GNSS Advanced Demonstration Tool for Orbit and Clock Analysis (MADOCA), a software estimator of precise satellite information, by JAXA, u-blox C099 ZED-F9P and MSJ-3008-GM4-QZS using MADOCA-PPP can be exploited in GNSS applications that require sub-decimeter accuracy without being costly. To evaluate their performance, convergence time and accuracy of solutions are compared to Trimble NetR9, a survey-grade receiver. Post-processed PPP solutions of ZED-F9P were computed using RTKLIB and real-time PPP was provided by the MSJ-3008-GM4-QZS. Results showed ZED-F9P achieved an RMS of 5.28 cm, 2.89 cm, and 9.55 cm in East, North, and Up directions. This means ZED-F9P can be used in applications requiring below 10 cm accuracy even without base station. MSJ-3008-GM4-QZS obtained an RMS of 10.45 cm, 6.27 cm, and 27.56 cm in the same directions. Unlike ZED-F9P, it achieved above 10 cm accuracy in North and Up directions which is due to large errors from cycle slips and jumps in observations. Interestingly, no fixed solutions were achieved between the 20:00 to 21:00 UTC period, although said receiver was able to receive corrections. However, if the observations after 20:00 UTC were removed, the MSJ-3008-GM4-QZS improved to 7.17 cm, 3.58 cm, and 22.32 cm in the same directions.

2014 ◽  
Vol 67 (3) ◽  
pp. 523-537 ◽  
Author(s):  
Aigong Xu ◽  
Zongqiu Xu ◽  
Xinchao Xu ◽  
Huizhong Zhu ◽  
Xin Sui ◽  
...  

On 27 December 2012 it was announced officially that the Chinese Navigation Satellite System BeiDou (BDS) was able to provide operational services over the Asia-Pacific region. The quality of BDS observations was confirmed as comparable with those of GPS, and relative positioning in static and kinematic modes were also demonstrated to be very promising. As Precise Point Positioning (PPP) technology is widely recognized as a method of precise positioning service, especially in real-time, in this contribution we concentrate on the PPP performance using BDS data only. BDS PPP in static, kinematic and simulated real-time kinematic mode is carried out for a regional network with six stations equipped with GPS- and BDS-capable receivers, using precise satellite orbits and clocks estimated from a global BDS tracking network. To validate the derived positions and trajectories, they are compared to the daily PPP solution using GPS data. The assessment confirms that the performance of BDS PPP is very comparable with GPS in terms of both convergence time and accuracy.


2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Tamer Baybura ◽  
İbrahim Tiryakioğlu ◽  
Mehmet Ali Uğur ◽  
Halil İbrahim Solak ◽  
Şeyma Şafak

Real-time kinematic (RTK) technique is important for mapping applications requiring short measure time, the distance between rover and base station, and high accuracy. There are several RTK methods used today such as the traditional RTK, long base RTK (LBRTK), network RTK (NRTK), and precise point positioning RTK (PPP-RTK). NRTK and LBRTK are popular with the advantage of the distance, the time, and accuracy. In the present study, the NRTK and LBRTK measurements were compared in terms of accuracy and distance in a test network with 6 sites that was established between 5 and 60 km. Repetitive NRTK and LBRTK measurements were performed on 6 different days in 2015-2017-2018 and additionally 4 campaigns of repetitive static measurements were carried out in this test network. The results of NRTK and LBRTK methods were examined and compared with all relevant aspects by considering the results of the static measurements as real coordinates. The study results showed that the LBRTK and NRTK methods yielded similar results at base lengths up to 40 km with the differences less than 3 cm horizontally and 4 cm vertically.


2019 ◽  
Vol 11 (3) ◽  
pp. 311 ◽  
Author(s):  
Wenju Fu ◽  
Guanwen Huang ◽  
Yuanxi Zhang ◽  
Qin Zhang ◽  
Bobin Cui ◽  
...  

The emergence of multiple global navigation satellite systems (multi-GNSS), including global positioning system (GPS), global navigation satellite system (GLONASS), Beidou navigation satellite system (BDS), and Galileo, brings not only great opportunities for real-time precise point positioning (PPP), but also challenges in quality control because of inevitable data anomalies. This research aims at achieving the real-time quality control of the multi-GNSS combined PPP using additional observations with opposite weight. A robust multiple-system combined PPP estimation is developed to simultaneously process observations from all the four GNSS systems as well as single, dual, or triple systems. The experiment indicates that the proposed quality control can effectively eliminate the influence of outliers on the single GPS and the multiple-system combined PPP. The analysis on the positioning accuracy and the convergence time of the proposed robust PPP is conducted based on one week’s data from 32 globally distributed stations. The positioning root mean square (RMS) error of the quad-system combined PPP is 1.2 cm, 1.0 cm, and 3.0 cm in the east, north, and upward components, respectively, with the improvements of 62.5%, 63.0%, and 55.2% compared to those of single GPS. The average convergence time of the quad-system combined PPP in the horizontal and vertical components is 12.8 min and 12.2 min, respectively, while it is 26.5 min and 23.7 min when only using single-GPS PPP. The positioning performance of the GPS, GLONASS, and BDS (GRC) combination and the GPS, GLONASS, and Galileo (GRE) combination is comparable to the GPS, GLONASS, BDS and Galileo (GRCE) combination and it is better than that of the GPS, BDS, and Galileo (GCE) combination. Compared to GPS, the improvements of the positioning accuracy of the GPS and GLONASS (GR) combination, the GPS and Galileo (GE) combination, the GPS and BDS (GC) combination in the east component are 53.1%, 43.8%, and 40.6%, respectively, while they are 55.6%, 48.1%, and 40.7% in the north component, and 47.8%, 40.3%, and 34.3% in the upward component.


Sensors ◽  
2019 ◽  
Vol 19 (12) ◽  
pp. 2762 ◽  
Author(s):  
Lina He ◽  
Hairui Zhou ◽  
Yuanlan Wen ◽  
Xiufeng He

Although there are already several real-time precise positioning service providers, unfortunately, not all users can use the correction information due to either cost of the service and limitation of their equipment or out of the service coverage. An alternative way is to enhance the accuracy of the predicted satellite clocks for precise real-time positioning. Based on the study of existing prediction models, an improved model combing the spectrum analysis (SA) and the generalized regression neural network (GRNN) model is proposed especially for BeiDou satellite navigation system (BDS)-2 satellites. The periodic terms and GRNN-related parameters including length and interval of sample data, as well as a smooth factor, are optimized satellite by satellite to consider satellite-specific characteristics for all the fourteen BDS-2 satellites. The improved model is validated by comparing the predicted clocks of existing models and the improved model with precisely estimated ones. The bias of the predicted clock is within ±0.5 ns over three hours and better than that of the other models and can be used for several real-time precise applications. The clock prediction is further evaluated by applying clock corrections to precise point positioning (PPP) in both static and kinematic mode for eight IGS (International GNSS Service) MGEX (Multi-GNSS Experiment) stations in the Asia-Pacific region. In the static PPP, the improved model is validated to be effective, and position accuracies of some IGS MGEX stations achieve more than 30.0% improvements on average for each component, which enables us to obtain sub-decimeter positioning. In the kinematic PPP, the improved model performs much better than the others in terms of both the convergence time and the position accuracy. The convergence time can be shortened from 1–2 h to 0.5–1 h, while the position accuracy is enhanced by 15.4%, 21.6% and 19.3% on average in east, north and up component, respectively.


2018 ◽  
Vol 8 (12) ◽  
pp. 2537 ◽  
Author(s):  
Tianjun Liu ◽  
Jian Wang ◽  
Hang Yu ◽  
Xinyun Cao ◽  
Yulong Ge

The real-time precise point positioning (RT PPP) technique has attracted increasing attention due to its high-accuracy and real-time performance. However, a considerable initialization time, normally a few hours, is required in order to achieve the proper convergence of the real-valued ambiguities and other estimate parameters. The RT PPP convergence time may be reduced by combining quad-constellation global navigation satellite system (GNSS), or by using RT ionospheric products to constrain the ionosphere delay. But to improve the performance of convergence and achieve the best positioning solutions in the whole data processing, proper and precise variances of the observations and ionospheric constraints are important, since they involve the processing of measurements of different types and with different accuracy. To address this issue, a weighting approach is proposed by a combination of the weight factors searching algorithm and a moving-window average filter. In this approach, the variances of ionospheric constraints are adjusted dynamically according to the principle that the sum of the quadratic forms of weighted residuals is the minimum, and the filter is applied to combine all epoch-by-epoch weight factors within a time window. To evaluate the proposed approach, datasets from 31 Multi-GNSS Experiment (MGEX) stations during the period of DOY (day of year) 023-054 in 2018 are analyzed with different positioning modes and different data processing methods. Experimental results show that the new weighting approach can significantly improve the convergence performance, and that the maximum improvement rate reaches 35.9% in comparison to the traditional method of priori variance in the static dual-frequency positioning mode. In terms of the RMS (Root Mean Square) statistics of positioning errors calculated by the new method after filter convergence, the same accuracy level as that of RT PPP without constraints can be achieved.


2016 ◽  
Vol 10 (4) ◽  
Author(s):  
Akram Afifi ◽  
Ahmed El-Rabbany

AbstractThis paper introduces a comparison between dual-frequency precise point positioning (PPP) post-processing model, which combines the observations of three different GNSS constellations, namely GPS, Galileo, and BeiDou and real-time PPP model. A drawback of a single GNSS system such as GPS, however, is the availability of sufficient number of visible satellites in urban areas. Combining GNSS observations offers more visible satellites to users, which in turn is expected to enhance the satellite geometry and the overall positioning solution. However, combining several GNSS observables introduces additional biases, which require rigorous modelling, including the GNSS time offsets and hardware delays. In this paper, a GNSS post-processing PPPP model is developed using ionosphere-free linear combination. The additional biases of the GPS, Galileo, and BeiDou combination are accounted for through the introduction of a new unknown parameter, which is identified as the inter-system bias, in the PPP mathematical model. Natural Resources Canada’s GPSPace PPP software is modified to enable a combined GPS / Galileo / BeiDou PPP solution and to handle the newly inter-system bias. A total of four data sets at four IGS stations are processed to verify the developed PPP model. Precise satellite orbit and clock products from the IGS-MGEX network are used to correct of the GPS, Galileo and BeiDou measurements. For the real-time PPP model the corrections of the satellites orbit and clock are obtained through the international GNSS service (IGS) real-time service (RTS). GPS and Galileo Observations are used for the GNSS RTS-IGS PPP model as the RTS-IGS satellite products are not available for BeiDou satellites. This paper provides the GNSS RTS-IGS PPP model using different satellite clock corrections namely: IGS01, IGC01, IGS01, and IGS03. All PPP models results of convergence time and positioning precision are compared to the traditional GPS-only PPP model. It is shown that combining GPS, Galileo, and BeiDou observations in a PPP model reduces the convergence time by 25 % compared with the GPS-only PPP model.


Sensors ◽  
2021 ◽  
Vol 21 (6) ◽  
pp. 1956
Author(s):  
Natalia Wielgocka ◽  
Tomasz Hadas ◽  
Adrian Kaczmarek ◽  
Grzegorz Marut

Global Navigation Satellite Systems (GNSS) have revolutionized land surveying, by determining position coordinates with centimeter-level accuracy in real-time or up to sub-millimeter accuracy in post-processing solutions. Although low-cost single-frequency receivers do not meet the accuracy requirements of many surveying applications, multi-frequency hardware is expected to overcome the major issues. Therefore, this paper is aimed at investigating the performance of a u-blox ZED-F9P receiver, connected to a u-blox ANN-MB-00-00 antenna, during multiple field experiments. Satisfactory signal acquisition was noticed but it resulted as >7 dB Hz weaker than with a geodetic-grade receiver, especially for low-elevation mask signals. In the static mode, the ambiguity fixing rate reaches 80%, and a horizontal accuracy of few centimeters was achieved during an hour-long session. Similar accuracy was achieved with the Precise Point Positioning (PPP) if a session is extended to at least 2.5 h. Real-Time Kinematic (RTK) and Network RTK measurements achieved a horizontal accuracy better than 5 cm and a sub-decimeter vertical accuracy. If a base station constituted by a low-cost receiver is used, the horizontal accuracy degrades by a factor of two and such a setup may lead to an inaccurate height determination under dynamic surveying conditions, e.g., rotating antenna of the mobile receiver.


2017 ◽  
Vol 34 (10) ◽  
pp. 15-21 ◽  
Author(s):  
Sonya Rapinta Manalu ◽  
Jurike Moniaga ◽  
Dionisius Andrian Hadipurnawan ◽  
Firda Sahidi

Purpose Low-cost microcomputers such as the Raspberry Pi are common in library makerspaces. This paper aims to create an OBD-II technology to diagnose a vehicle’s condition. Design/methodology/approach An OBD-II scanner plugged into the OBD-II port or usually called the data link connector (DLC), sends diagnostics to the Raspberry Pi. Findings Compared with other microcontrollers such as Arduino, the Raspberry Pi was chosen because it sustains the application to receive real-time diagnostics, process the diagnostics and send commands to automobiles at the same time, rather than Arduino that must wait for another process finished to run another process. Originality/value This paper also represents the history of mobile technology and OBD-II technology, comparison between Arduino and Raspberry Pi and Node.


2010 ◽  
Vol 7 (2) ◽  
pp. 32 ◽  
Author(s):  
L. Khriji ◽  
F. Touati ◽  
N. Hamza

 Nowadays, there is a significant improvement in technology regarding healthcare. Real-time monitoring systems improve the quality of life of patients as well as the performance of hospitals and healthcare centers. In this paper, we present an implementation of a designed framework of a telemetry system using ZigBee technology for automatic and real-time monitoring of Biomedical signals. These signals are collected and processed using 2-tiered subsystems. The first subsystem is the mobile device which is carried on the body and runs a number of biosensors. The second subsystem performs further processing by a local base station using the raw data which is transmitted on-request by the mobile device. The processed data as well as its analysis are then continuously monitored and diagnosed through a human-machine interface. The system should possess low power consumption, low cost and advanced configuration possibilities. This paper accelerates the digital convergence age through continual research and development of technologies related to healthcare. 


2018 ◽  
Vol 72 (1) ◽  
pp. 19-33 ◽  
Author(s):  
Francesco Basile ◽  
Terry Moore ◽  
Chris Hill

With the evolving Global Navigation Satellite System (GNSS) landscape, the International GNSS Service (IGS) has started the Multi-GNSS Experiment (MGEX) to produce precise products for new generation systems. Various analysis centres are working on the estimation of precise orbits, clocks and bias for Galileo, Beidou and Quasi-Zenith Satellite System (QZSS) satellites. However, at the moment these products can only be used for post-processing applications. Indeed, the IGS Real-Time service only broadcasts Global Positioning System (GPS) and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) corrections. In this research, a simulator of multi-GNSS observations and real-time precise products has been developed to analyse the performance of GPS-only, Galileo-only and GPS plus Galileo Precise Point Positioning (PPP). The error models in the simulated orbits and clocks were based on the difference between the GPS Real-Time and the Final products. Multiple scenarios were analysed, considering different signals combined in the Ionosphere Free linear combination. Results in a simulated open area environment show better performance of the Galileo-only case over the GPS-only case. Indeed, up 33% and 29% of improvement, respectively, in the accuracy level and convergence time can be observed when using the full Galileo constellation compared to GPS. The dual constellation case provides good improvements, in particular in the convergence time (47% faster than GPS). This paper will also consider the impact of different linear combinations of the Galileo signals, and the potential of the E5 Alternative Binary Offset Carrier (AltBOC) signal. Even though it is significantly more precise than E5a, the PPP performance obtained with the Galileo E1-E5a combination is either better or similar to the one with Galileo E1-E5. The reason for this inconsistency was found in the use of the ionosphere free combination with E1. Finally, alternative methods of ionosphere error mitigation are considered in order to ensure the best possible positioning performance from the Galileo E5 signal in multi-frequency PPP.


Sign in / Sign up

Export Citation Format

Share Document