scholarly journals Study of the Gene Expression of aacC1 Gene in Acinetobacter baumannii that Responsible for Aminoglycoside Resistance

2022 ◽  
Vol 18 (1) ◽  
pp. 26-40
Author(s):  
Rana Mujahd Abdullah ◽  
Arkan Adnan Mahdi
Author(s):  
Elham Abbasi ◽  
Hossein Goudarzi ◽  
Ali Hashemi ◽  
Alireza Salimi Chirani ◽  
Abdollah Ardebili ◽  
...  

AbstractA major challenge in the treatment of infections has been the rise of extensively drug resistance (XDR) and multidrug resistance (MDR) in Acinetobacter baumannii. The goals of this study were to determine the pattern of antimicrobial susceptibility, blaOXA and carO genes among burn-isolated A. baumannii strains. In this study, 100 A. baumannii strains were isolated from burn patients and their susceptibilities to different antibiotics were determined using disc diffusion testing and broth microdilution. Presence of carO gene and OXA-type carbapenemase genes was tested by PCR and sequencing. SDS-PAGE was done to survey CarO porin and the expression level of carO gene was evaluated by Real-Time PCR. A high rate of resistance to meropenem (98%), imipenem (98%) and doripenem (98%) was detected. All tested A. baumannii strains were susceptible to colistin. The results indicated that 84.9% were XDR and 97.9% of strains were MDR. In addition, all strains bore blaOXA-51 like and blaOXA-23 like and carO genes. Nonetheless, blaOXA-58 like and blaOXA-24 like genes were harbored by 0 percent and 76 percent of strains, respectively. The relative expression levels of the carO gene ranged from 0.06 to 35.01 fold lower than that of carbapenem-susceptible A. baumannii ATCC19606 and SDS – PAGE analysis of the outer membrane protein showed that all 100 isolates produced CarO. The results of current study revealed prevalence of blaOXA genes and changes in carO gene expression in carbapenem resistant A.baumannii.


Pathogens ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 471
Author(s):  
Camila Pimentel ◽  
Casin Le ◽  
Marisel R. Tuttobene ◽  
Tomas Subils ◽  
Jasmine Martinez ◽  
...  

Acinetobacter baumannii is a nosocomial pathogen capable of causing serious infections associated with high rates of morbidity and mortality. Due to its antimicrobial drug resistance profile, A. baumannii is categorized as an urgent priority pathogen by the Centers for Disease Control and Prevention in the United States and a priority group 1 critical microorganism by the World Health Organization. Understanding how A. baumannii adapts to different host environments may provide critical insights into strategically targeting this pathogen with novel antimicrobial and biological therapeutics. Exposure to human fluids was previously shown to alter the gene expression profile of a highly drug-susceptible A. baumannii strain A118 leading to persistence and survival of this pathogen. Herein, we explore the impact of human pleural fluid (HPF) and human serum albumin (HSA) on the gene expression profile of a highly multi-drug-resistant strain of A. baumannii AB5075. Differential expression was observed for ~30 genes, whose products are involved in quorum sensing, quorum quenching, iron acquisition, fatty acid metabolism, biofilm formation, secretion systems, and type IV pilus formation. Phenotypic and further transcriptomic analysis using quantitative RT-PCR confirmed RNA-seq data and demonstrated a distinctive role of HSA as the molecule involved in A. baumannii’s response.


2016 ◽  
Vol 60 (6) ◽  
pp. 3415-3418 ◽  
Author(s):  
Esther Zander ◽  
Harald Seifert ◽  
Paul G. Higgins

Different physiological conditions, such as NaCl, low pH, and sodium salicylate, have been shown to affect antibiotic resistance determinants inAcinetobacter baumanniiisolates. Therefore, the aim of this study was to investigate the effects of NaCl, sodium salicylate, and low pH on the susceptibility ofA. baumanniito carbapenem. We cloned genes encoding oxacillinases (OXA) of different subclasses, with their associated promoters, from carbapenem-resistantA. baumanniiisolates into the same vector and transferred them to theA. baumanniireference strains ATCC 19606 and ATCC 17978. Carbapenem MICs were determined at least in triplicate by agar dilution under standard conditions, as well as in the presence of 200 mM NaCl or 16 mM sodium salicylate, or at pH 5.8. OXA-58-like gene expression was determined by reverse transcription-quantitative PCR (qRT-PCR). Under some experimental conditions, significant MIC reductions were shown for some transformants but not for others. Only in one instance were all transformants harboring the same OXA affected by the same condition: at pH 5.8, the imipenem and meropenem MICs for strains expressing OXA-58-like enzymes decreased from a resistant level (32 to 64 mg/liter) to an intermediate-susceptible level (8 mg/liter). However,blaOXA-58-likegene expression remained the same. MICs for both wild-type reference strains were not affected by the conditions tested. Our results indicate that the effects of the experimental conditions tested on OXAin vivoare mostly strain dependent. MICs were not reduced to wild-type levels, suggesting that the conditions tested do not lead to complete OXA inhibition in the bacterial cell.


Author(s):  
Marta Martínez-Guitián ◽  
Juan C Vázquez-Ucha ◽  
Laura Álvarez-Fraga ◽  
Kelly Conde-Pérez ◽  
Juan A Vallejo ◽  
...  

Abstract Background Infections caused by multidrug-resistant pathogens such as Acinetobacter baumannii constitute a major health problem worldwide. In this study we present a global in vivo transcriptomic analysis of A. baumannii isolated from the lungs of mice with pneumonia infection. Methods Mice were infected with A. baumannii ATCC 17978 and AbH12O-A2 strains and the total bacterial RNA were analyzed by RNA sequencing. Lists of differentially expressed genes were obtained and 14 of them were selected for gene deletion and further analysis. Results Transcriptomic analysis revealed a specific gene expression profile in A. baumannii during lung infection with upregulation of genes involved in iron acquisition and host invasion. Mutant strains lacking feoA, mtnN, yfgC, basB, hisF, oatA, and bfnL showed a significant loss of virulence in murine pneumonia. A decrease in biofilm formation, adherence to human epithelial cells, and growth rate was observed in selected mutants. Conclusions This study provides an insight into A. baumannii gene expression profile during murine pneumonia infection. Data revealed that 7 in vivo upregulated genes were involved in virulence and could be considered new therapeutic targets.


mSphere ◽  
2018 ◽  
Vol 3 (4) ◽  
Author(s):  
Sarah E. Anderson ◽  
Edgar X. Sherman ◽  
David S. Weiss ◽  
Philip N. Rather

ABSTRACTHeteroresistance is a phenomenon where a subpopulation of cells exhibits higher levels of antibiotic resistance than the general population. Analysis of tobramycin resistance inAcinetobacter baumanniiAB5075 using Etest strips demonstrated that colonies with increased resistance arose at high frequency within the zone of growth inhibition. The presence of a resistant subpopulation was confirmed by population analysis profiling (PAP). The tobramycin-resistant subpopulation was cross resistant to gentamicin but not amikacin. The increased tobramycin resistance phenotype was highly unstable, and cells reverted to a less resistant population at frequencies of 60 to 90% after growth on nonselective media. Furthermore, the frequency of the resistant subpopulation was not increased by preincubation with subinhibitory concentrations of tobramycin. The tobramycin-resistant subpopulation was shown to replicate during the course of antibiotic treatment, demonstrating that these were not persister cells. InA. baumanniiAB5075, a large plasmid (p1AB5075) carriesaadB, a 2″-nucleotidyltransferase that confers resistance to both tobramycin and gentamicin but not amikacin. TheaadBgene is part of an integron and is carried adjacent to four additional resistance genes that are all flanked by copies of an integrase gene. In isolates with increased resistance, this region was highly amplified in a RecA-dependent manner. However, in arecAmutant, colonies with unstable tobramycin resistance arose by a mechanism that did not involve amplification of this region. These data indicate that tobramycin heteroresistance occurs by at least two mechanisms inA. baumannii, and future studies to determine its effect on patient outcomes are warranted.IMPORTANCEAcinetobacter baumanniihas become an important pathogen in hospitals worldwide, where the incidence of these infections has been increasing.A. baumanniiinfections have become exceedingly difficult to treat due to a rapid increase in the frequency of multidrug- and pan-resistant isolates. This has prompted the World Health Organization to listA. baumanniias the top priority for the research and development of new antibiotics. This study reports for the first time a detailed analysis of aminoglycoside heteroresistance inA. baumannii. We define the mechanistic basis for heteroresistance, where theaadB(ant2″)Iagene encoding an aminoglycoside adenylyltransferase becomes highly amplified in a RecA-dependent manner. Remarkably, this amplification of 20 to 40 copies occurs stochastically in 1/200 cells in the absence of antibiotic selection. In addition, we provide evidence for a second RecA-independent mechanism for aminoglycoside heteroresistance. This study reveals that aminoglycoside resistance inA. baumanniiis far more complex than previously realized and has important implications for the use of aminoglycosides in treatingA. baumanniiinfections.


PLoS ONE ◽  
2020 ◽  
Vol 15 (11) ◽  
pp. e0242674
Author(s):  
María Lázaro-Díez ◽  
Itziar Chapartegui-González ◽  
Borja Suberbiola ◽  
J. Gonzalo Ocejo-Vinyals ◽  
Marcos López-Hoyos ◽  
...  

Acinetobacter baumannii is a Gram negative nosocomial pathogen that has acquired increasing worldwide notoriety due to its high antibiotic resistance range and mortality rates in hospitalized patients. Therefore, it is necessary to better understand key aspects of A. baumannii pathogenesis such as host-pathogen interactions. In this report, we analyzed both gene expression and cytokine production by human neutrophils infected with A. baumannii. Our assays reveal a proinflammatory response of neutrophils after A. baumannii infection, since intracellular transcription of effector proteins such as COX-2, transcription factors, and proinflammatory cytokines resulted significantly upregulated in neutrophils infected by A. baumannii, compared with unstimulated human neutrophils. Translation and release of CXCL-8, IL-1β and TNF-α by neutrophils was confirmed by protein quantification in culture supernatants. Results obtained in this report reinforce the importance of human neutrophils in controlling A. baumannii infections but also emphasize the proinflammatory nature of these host-pathogen interactions as a target for future immunomodulatory therapies.


Sign in / Sign up

Export Citation Format

Share Document