scholarly journals Chemical Modification of Photinia × fraseri Plant Size and Lateral Branching

1993 ◽  
Vol 11 (1) ◽  
pp. 1-5
Author(s):  
Allen D. Owings ◽  
Steven E. Newman

Abstract Five plant growth regulators were applied to container-grown Photinia × fraseri as foliar sprays to determine their influences on plant size and lateral branching. Height, width, and lateral branch number were determined at three month intervals over one year. Treated plants generally were shorter than control plants in response to uniconazole, paclobutrazol, and benzylaminopurine (BA) and were taller than controls when BA was applied with gibberellins A4 + 7. Each growth regulator altered one or more growth factors dependent on the time after application. Paclobutrazol and uniconazole reduced shoot width 3 months after application (MAA) and 3 to 6 MAA, respectively compared to the control plants. Higher rates of uniconazole and paclobutrazol were responsible for shoot width reductions 12 MAA. Lateral branching was increased 3 MAA by dikegulac-sodium and paclobutrazol at the highest rates only and was reduced by uniconazole 12 MAA. Uniconazole reduced shoot dry weight 12 MAA.

HortScience ◽  
1990 ◽  
Vol 25 (9) ◽  
pp. 1125b-1125
Author(s):  
Allen D. Owings ◽  
Steven E. Newman

The action of foliar-applied uniconazole, paclobutrazol, dikegulac-sodium, ancymidol, 6-BA, GA4+7, and 6-BA + GA4+7 On container–grown Photinia × fraseri was studied over a one year period. Vegetative growth habit was evaluated at three month intervals. Shoot dry weight and histological examination of stern anatomy in the apical meristematic region was conducted at experiment termination.Several plant growth regulators, primarily uniconazole, 6-BA, 6-BA + GA4+7, and dikegulac-sodium, stimulated lateral branching. Linear increases in lateral branching occurred as application rates increased. High application rates of uniconazole and paclobutrazol created an asymmetrical growth habit and decreased dry weight accumulation.


HortScience ◽  
1996 ◽  
Vol 31 (3) ◽  
pp. 325b-325
Author(s):  
C.A. Martin ◽  
S. Bhattacharya

Seedling liners of sweet acacia (Acacia smallii), shoestring acacia (Acacia stenophylla), palo brea (Cercidium praecox), and Chilean mesquite (Prosopis chilensis) were potted on 1 June 1993 into 27-liter (#5) black polyethylene containers filled with a 70% ponderosa pine forest mulch, 15% sand, and 15% silt (by volume) rooting medium. Just before potting, the inner wall of one-half of the containers of each species was painted with a latex paint impregnated with cupric hydroxide; the remaining containers were unpainted as a control treatment. Trees were then grown for 5 months in an outdoor container production nursery at a spacing distance of 45 cm. All trees were irrigated and fertilized according to standard nursery practices. The effect of cupric-hydroxide-painted containers (CHPC) on tree growth was species specific. Compared with nonpainted controls, CHPC caused roots to become more branched and decreased shoot lateral branch number and extension lengths of sweet acacia and shoestring acacia. CHPC also decreased height of shoestring acacia, but did not affect height of sweet acacia or root and shoot dry weight of sweet acacia and shoestring acacia. Shoot and root dry weight, height, and shoot lateral branch number and extension lengths of Chilean mesquite in CHPC were all increased compared with nonpainted controls. CHPC did not affect root branching of Chilean mesquite. Also, CHPC did not affect any measured growth variable of palo brea.


Author(s):  
Mahmoud Ahmed Touny El-Dabaa ◽  
Hassan Abd-El-Khair

Abstract Background Orobanche crenata is an obligate root parasite belonging to Orbanchaceae. Broomrape causes great damage to the faba bean. Several attempts were applied for controlling parasitic weeds. So, the aim of this work is to study the application of Trichoderma spp. as well as three rhizobacteria species in comparison to herbicidal effect of Glyphosate (Glialka 48% WSC) for controlling broomrape infesting faba bean (Vicia faba). Materials and methods Three pot experiments were carried out in the greenhouse of the National Research Centre, Dokki, Giza, Egypt during two successive winter seasons. Trichoderma inocula were adjusted to 3.6 × 108 propagules/ml and the bacterium inocula were adjusted at 107–109 colony-forming unit (CFU)/ml. All treatments were applied, before 1 week of sowing, at rate of 50 ml per pot in experiments I and II, while 100 ml per pot in experiment III. Results Trichoderma spp. (T. harzianum, T. viride and T. vierns) as well as three rhizobacteria species (Pseudomonas fluorescens, Bacillus subtilis and Bacillus pumilus) enhanced the growth parameters in faba bean plants, i.e. shoot length, shoot fresh weight, shoot dry weight and leaf number in the first experiment when applied without O. crenata infection. In the second experiment, all bio-control could protect plants against O. crenata infection, where it had better juvenile number reduction, than glyphosate after 2 months of application. Both B. subtilis and B. pumilus had the highest reduction to juvenile fresh weight, while their effect was equal to herbicide for juvenile dry weight, respectively. The bio-control agents had high effects until the 4th month, but it was less than that of the herbicide. In experiment III, the bio-control agents could highly reduce the juvenile parameters after 2 months, as well as juvenile fresh weight and juvenile dry weight after 4 months, than the herbicide, respectively. The bio-control agents were effective until 6 months, but less than the herbicide effect. All bio-control treatments highly increased the plant growth parameters, than the herbicide. Conclusion The application of Trichoderma spp. as well as rhizobacteria species could play an important role in controlling broomrape in faba bean as a natural bioherbicide.


2021 ◽  
Author(s):  
Leila Tabande ◽  
Mozhgan Sepehri ◽  
Jafar Yasrebi ◽  
Mehdi Zarei ◽  
Reza Ghasemi-Fasaei ◽  
...  

Abstract Zinc oxide nanoparticles (ZnO-NPs) are among the most commonly used nano-fertilizers (NF). However, elevated levels of ZnO-NPs in soil may affect plant growth and development due to its potential toxicity when accumulated in large amounts in plant tissues. This research was conducted using an in situ rhizobox system with the aims of evaluating Zinc uptake from nano-zinc oxide amended rhizosphere soil by alfalfa plant and the effect of plant growth promoting microorganisms on alleviating the phytotoxicity of ZnO-NPs. Treatments included microbial inoculations (Sinorhizobium meliloti, Serendipita indica) and different ZnO-NPs concentrations (0, 400 and 800 mg Kg− 1) with three replications. The results indicated that S. indica minimized the phytotoxicity of ZnO-NPs to alfalfa by enhancing growth rate and decreasing Zinc (Zn) translocation from root to shoot. Compared with plants inoculated with S. meliloti, co-inoculation with S. indica increased the shoot dry weight by 18.33% and 8.05% at 400 and 800 mg Kg− 1ZnO-NPs. However, at the highest level of ZnO-NPs (800 mg kg− 1), root inoculation of S. indica and S. indica + S. meliloti decreased Zn transfer factor by 60.2% and 44.3% compared to S. meliloti, respectively. Furthermore, a distinct relation between tolerance of S. indica-colonized plant to ZnO-NPs and the ability of S. indica in inhibiting or retarding degradation of polyunsaturated lipids through prevention of excess reactive oxygen species formation was observed. Malondialdehyde content of inoculated plants with S. indica either alone or in combination with S. meliloti was significantly lower than non-inoculated plants (p < 0.01). Zn-induced oxidative stress was mitigated by S. indica through enhanced activities of catalase and peroxidase enzymes. The findings of the present study indicate the potential use of endophytes fungus S. indica for ensuring food safety and security, and human health in heavy metal–polluted soil by reducing the phytoavailability of heavy metals in the aerial parts of the host plants.


mSphere ◽  
2020 ◽  
Vol 5 (4) ◽  
Author(s):  
Dario X. Ramirez-Villacis ◽  
Omri M. Finkel ◽  
Isai Salas-González ◽  
Connor R. Fitzpatrick ◽  
Jeffery L. Dangl ◽  
...  

ABSTRACT Glyphosate is a commonly used herbicide with a broad action spectrum. However, at sublethal doses, glyphosate can induce plant growth, a phenomenon known as hormesis. Most glyphosate hormesis studies have been performed under microbe-free or reduced-microbial-diversity conditions; only a few were performed in open systems or agricultural fields, which include a higher diversity of soil microorganisms. Here, we investigated how microbes affect the hormesis induced by low doses of glyphosate. To this end, we used Arabidopsis thaliana and a well-characterized synthetic bacterial community of 185 strains (SynCom) that mimics the root-associated microbiome of Arabidopsis. We found that a dose of 3.6 × 10−6 g acid equivalent/liter (low dose of glyphosate, or LDG) produced an ∼14% increase in the shoot dry weight (i.e., hormesis) of uninoculated plants. Unexpectedly, in plants inoculated with the SynCom, LDG reduced shoot dry weight by ∼17%. We found that LDG enriched two Firmicutes and two Burkholderia strains in the roots. These specific strains are known to act as root growth inhibitors (RGI) in monoassociation assays. We tested the link between RGI and shoot dry weight reduction in LDG by assembling a new synthetic community lacking RGI strains. Dropping RGI strains out of the community restored growth induction by LDG. Finally, we showed that individual RGI strains from a few specific phyla were sufficient to switch the response to LDG from growth promotion to growth inhibition. Our results indicate that glyphosate hormesis was completely dependent on the root microbiome composition, specifically on the presence of root growth inhibitor strains. IMPORTANCE Since the introduction of glyphosate-resistant crops, glyphosate has become the most common and widely used herbicide around the world. Due to its intensive use and ability to bind to soil particles, it can be found at low concentrations in the environment. The effect of these remnants of glyphosate in plants has not been broadly studied; however, glyphosate 1,000 to 100,000 times less concentrated than the recommended field dose promoted growth in several species in laboratory and greenhouse experiments. However, this effect is rarely observed in agricultural fields, where complex communities of microbes have a central role in the way plants respond to external cues. Our study reveals how root-associated bacteria modulate the responses of Arabidopsis to low doses of glyphosate, shifting between growth promotion and growth inhibition.


2010 ◽  
Vol 37 (5) ◽  
pp. 448 ◽  
Author(s):  
Alex Whan ◽  
Nicole Robinson ◽  
Prakash Lakshmanan ◽  
Susanne Schmidt ◽  
Karen Aitken

The economic and environmental consequences of inefficient use of nitrogen (N) fertiliser in agricultural crops is of concern worldwide, so new crop varieties with improved nitrogen use efficiency (NUE) are sought. Here, we report the first study of mapping quantitative trait loci (QTL) for nitrogen physiology traits in sugarcane. QTL analysis was undertaken for each parent of a segregating bi-parental sugarcane mapping population. We grew 168 progeny under limiting (0.2 mM NH4NO3) and non-limiting (5.0 mM NH4NO3) N supplies in two glasshouse experiments. Significant marker-trait associations (MTA) were detected in each treatment for shoot dry weight, root dry weight, total shoot N, shoot internal NUE (iNUE; measured as units shoot dry weight per unit N), leaf protein content and glutamine synthetase (GS) activity. MTA for GS activity did not co-locate with other traits except leaf protein content, indicating that variation in GS activity is not linked to plant size or iNUE during early growth. Under high N, there were no significant MTA for iNUE among markers from the male parent, Q165, an Australian commercial cultivar, but six MTA were found for markers inherited from the female parent, IJ76–514, a Saccharum officinarum ancestral variety. The results indicate that variation for iNUE under high N may be lower in commercial varieties than unimproved genotypes. Further, four MTA were consistent with previous field-based research on sugar and biomass production. Our study provides initial evidence that QTL may be incorporated in sugarcane breeding programs targeting improved NUE.


Biocelebes ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 1-9
Author(s):  
Wahyu Harso ◽  
Isna Isna ◽  
Yusran Yusran

Arbsucular mycorrhizal fungi promote plant growth by enhancing mineral uptake. Contribution degree of arbuscular mycorrhizal fungi to promote plant growth depend on species of plant-fungus association. The aim of this study was to compare the ability of three species of Glomus to promote maize plant growth. Maize plants were inoculated with 20 g inoculum of either Glomus deserticola, Glomus etunicatum, or Glomus clorum.  Inoculum was soil containing spore, hyphae and infected root. Maize plants without addition inoculum were also used as a control. Water availability in the soil as growing medium was maintained on 40% field capacity. The results showed that addition of inoculum from three species of Glomus increased average of maize plant shoot dry weight  although there was no statisticaly significant differences.  Maize plant inoculated with G. clorum had higher shoot dry weight than maize plant inoculated either with G. etunicatum or G. deserticola while root colonization by G. clorum was lowest.


2019 ◽  
Vol 67 (4) ◽  
Author(s):  
Felipe Romero-Perdomo ◽  
Jhonnatan Ocampo-Gallego ◽  
Mauricio Camelo-Rusinque ◽  
Ruth Bonila

In this study, we aimed at examining the potential to stimulate growth in Pennisetum clandestinum using four isolated bacterial strains from soils obtained from a Colombian tropical silvopastoral system. We previously identified genetically the strains and characterized two plant growth promotion activities. We found that the four bacterial strains were phylogenetically associated with Klebsiella sp. (strains 28P and 35P), Beijerinka sp. (37L) and Achromobacter xylosoxidans (E37), based on partial 16S rRNA gene sequencing. Moreover, the in vitro biochemical assays demonstrated that the strains exhibited some plant growth promotion mechanisms such as 1-aminocyclopropane-1-carboxylic acid deaminase activity and indole compound synthesis. Notably, bacterial inoculation under greenhouse conditions showed a positive influence on P. clandestinum growth. We found a significant (p < 0.05) effect on root and shoot length, and shoot dry weight. Shoot length increased by 52% and 30% with 37L and 35P, respectively, compared to those without inoculation treatment. Similarly, the use of 37L and 28P raised shoot dry weight values by 170% and 131%, respectively. In root development, inoculation with strains 37L and E37 increased root length by 134% and 100%, respectively. Beijerinckia sp. 37L was the most effective of the four strains at increasing P. clandestinum biomass and length.


2002 ◽  
Vol 20 (2) ◽  
pp. 104-109
Author(s):  
R. Lee Ivy ◽  
Ted E. Bilderback ◽  
Stuart L Warren

Abstract The landscape industry uses containerized plant material throughout the year. Thus, traditional spring potting at many nurseries has changed to potting throughout the year. The objective of this study was to determine the effect of potting date and rate of fertilization on plant growth and mineral nutrient content, substrate electrical conductivity (EC) and pH, and winter injury. To complete this objective, rooted stem cuttings of Ilex crenata Thunb. ‘Compacta’ and Viburnum awabuki K. Koch. ‘Chindo’ were potted in Raleigh, NC, July 17, 1998; September 7, 1998; October 29, 1998; March 25, 1999; and May 13, 1999. Two controlled-release fertilizers [Wilbro/Polyon 15N–1.8P–7.5K (15N–4P2O5–9K2O) and Scotts 23N–1.8P–6.6K (23N–4P2O5–8K2O)] were applied at four rates: a split application with 0.5X incorporated at potting and surface application of the remaining 0.5X six months after potting date [X = manufacturers' recommended rate per 3.8 liter (4 qt) container], and 1X, 1.5X, and 2X incorporated at potting. Plant growth and mineral nutrient content were determined one year after initial potting date. Substrate EC and pH were measured monthly. ‘Compacta’ holly and ‘Chindo’ viburnum potted in September or October were larger than plants potted in March regardless of fertilizer and rates of fertilization. In general, holly and viburnum were smaller when fertilized with 0.5/0.5X compared to 1X regardless of fertilizer and date of potting. Within each rate of fertilization, viburnum potted in September had significantly greater N and P content compared to viburnum potted in March or May. Nitrogen and P content were highly correlated to plant dry weight (r &gt; 0.79, P = 0.0001). Mineral nutrient content of holly responded similarly. No plants were injured by winter temperatures regardless of potting date or rate of fertilization throughout the study period. Plants potted in July, September, or October had the highest substrate EC values in March, whereas plants potted in March or May had highest EC values in August regardless of species, fertilizer or rate of fertilization. Substrate pH was unaffected by date of potting, but pH decreased with increasing rates of fertilization.


HortScience ◽  
1997 ◽  
Vol 32 (3) ◽  
pp. 546B-546 ◽  
Author(s):  
John M. Ruter

A study was conducted with Prunus × incamp `Okame' to evaluate the effects of a pot-in-pot production system compared to a conventional above-ground system and cyclic irrigation on plant growth and water loss. Plants were grown in #7 (26-L) containers with a 8:1 pinebark:sand (v/v) substrate. Cyclic irrigation provided the same total volume of water, but was applied one, three, or four times per day. Final plant height and stem diameter, shoot and root dry weight, total biomass, and root:shoot ratio were all increased for plants grown pot-in-pot compared to above-ground. Multiple irrigation cycles increased stem diameter, shoot dry weight, and total biomass, compared to a single irrigation application. Multiple irrigation cycles decreased the root:shoot ratio. Evapotranspiration was influenced by production system, irrigation, and date. Amount of water lost as leachate was influenced by irrigation and date. Cyclic irrigation resulted in a two-fold decrease in leachate volume. Soluble salts and nitrate-nitrogen in the leachate were influenced by an interaction between production system, irrigation, and date.


Sign in / Sign up

Export Citation Format

Share Document