Journal of Advanced Research in Mechanical Engineering and Technology

2020 ◽  
Author(s):  
Emad Elnajjar ◽  
S.-A.B. Al Omari ◽  
Farag Omar ◽  
Mohamed YE. Selim ◽  
AHI Mourad

This paper focuses on the Mechanical Engineering Program (MEP) at United Arab Emirates University (UAEU) as a case study in terms of consistent accreditation by the internationally recognized Accreditation Board for Engineering and Technology, Inc. (ABET), where significant proportions of the study give attention towards the recent records of accreditation; granted in 2016. The paper describes the program educational objectives (PEOs), the student learning outcomes (SOs), and the curriculum, direct and indirect assessment tools of the SOs and it’s mapping to the PEO, and the level of attainment achieved is addressed through a case study example.


2020 ◽  
Vol 24 (3 Part A) ◽  
pp. 1893-1893
Author(s):  
E Editorial

Corrigendum by Simeon Oka, Editor-in-Chief of the journal Thermal Science request that it is necessary write exact personal name of 2nd author of the paper DESIGN AND ANALYSIS OF DOUBLE-PIPE HEAT EXCHANGER WITH NEW ARRANGEMENTS OF CORRUGATED TUBES USING HONEYCOMB ARRANGEMENTS by Risuwana Begam HAJ MAIDEEN a* and Sivashankar SOMU b a Department of Mechanical Engineering, Sir Issac Newton College of Engineering and Technology, Nagapattinam, Tamilnadu, India b Department of Mechanical Engineering, Government College of Engineering, Sengipatti, Tanjore, Tamilnadu, India Original scientific paper https://doi.org/10.2298/TSCI190602458H published in the journal Thermal Science, Year 2020, No. 1A, Vol. 24, pp. 635-643 since due to typing error of the Corresponding author, personal name of the 2nd author was written as Sivashankar instead of correctly Sivasankar. <br><br><font color="red"><b> Link to the corrected article <u><a href="http://dx.doi.org/10.2298/TSCI190602458H ">10.2298/TSCI190602458H</a></b></u>


Author(s):  
Эльвира Яковлевна Соколова ◽  
Юрий Викторович Кобенко

Введение. Количественные и качественные изменения словарного состава современного английского языка и регулярное появление обширных неогенных сегментов лексики в его составе не только свидетельствуют о его жизнеспособности, но и являются прямыми доказательствами его динамичной эволюции в современном мире, давно обогнавшей другие языки по показателям тенденций развития в синхронной перспективе. Сообразуясь с инновациями в специальных отраслях знаний, современный английский язык автоматически выступает языком-лексикализатором для новообразующихся ономасиологических структур, одной и которых является лексико-семантическое поле «Интеллектуальные энергетические системы». Материал и методы. Материальной базой послужил авторский исследовательский корпус лексических единиц (всего 1 144 единицы), отобранных из аутентичных научно-технических изданий на английском языке в сфере интеллектуальных энергетических систем за период с 2015 по 2019 г. Статус неологизма в соответствующем сегменте корпуса определяется на основе лемматических статей таких репрезентативных лексикографических справочников современного английского языка, как Dictionary of Mechanical Engineering, Dictionary of Technical Terms, Electropedia, Encyclopedia Britannica, Encyclopedia of Energy Engineering and Technology, Engineering Dictionary, Power Engineering Dictionary, Cambridge Dictionary, Collins Online Dictionary, Urban Dictionary и др. В качестве рационально-эмпирической платформы исследования выступает структурно-системный подход, позволяющий интерпретировать структурные зависимости лексических множеств как систему (подсистему) элементов, а сам язык – как структурно-системное образование. Для определения степени неологизации лексико-семантического поля «Интеллектуальные энергетические системы» в составе современного английского языка использованы традиционные методы логики (анализ, синтез, сравнение, сопоставление, обобщение, противопоставление и пр.), методы статистики (квантитативный метод, метод группировки) и лингвистические методы, к которым относятся дескриптивный и структурные методы (метод компонентного анализа и непосредственных составляющих). Результаты и обсуждение. Процесс появления терминологических новообразований идет непрерывно на фоне значительного запоздания их лексикографической фиксации. На основе данных квантитативного и сравнительно-сопоставительного анализа выявлены темпы прироста тематических групп неогенными элементами и их локализация в исследуемом лексико-семантическом поле. Определение особенностей дистрибуции лексических новообразований позволяет спрогнозировать тенденции формирования терминологического аппарата сферы интеллектуальных энергетических систем в современном английском языке. В тематических группах преобладают двух- и трехкомпонентные терминонеологизмы, образованные при помощи композиционной словообразовательной модели, реализующей их номинативную функцию и стремление к детализации предлагаемых номинаций. Лексическое наполнение указанного поля идет фактически по межам увеличения и сокращения лексической длины конституирующих его единиц, отражающих актуальные тенденции развития словарного состава современного английского языка. Заключение. Анализ структуры лексико-семантического поля «Интеллектуальные энергетические системы» позволяет сделать вывод, что в ходе его генеза периферийная зона образовывалась вокруг ядерной и центральной полевых структур и содержит языковой материал, импортированный из смежных ономасиологических областей и характеризующийся наибольшим языковым приростом. Introduction. Quantitative and qualitative changes in the modern English vocabulary and regular production of extensive neogenic lexical segments in its content demonstrate the viability of this language and are vivid evidences of its dynamic evolution in the modern society confirming its leading position in the development trend indicators in the synchronous perspective. Coinciding with innovations in special areas of knowledge, modern English acts automatically as a vocabulary producer for new forming onomasiologic structures to which the lexical-semantic field “Smart Energy Systems” belongs. Material and methods. Author’s corpus consisting of 1 144 lexical units served as a material resource for this research. The corpus was selected from authentic scientific and technical publications over the period from 2015 to 2019. The neologism status in the specified corpus segment was determined through lemmatic articles taken from representative lexicographical references books like “Dictionary of Mechanical Engineering”, “Dictionary of Technical Terms”, “Electropedia”, “Encyclopedia Britannica”, “Encyclopedia of Energy Engineering and Technology”, “Engineering Dictionary”, “Power Engineering Dictionary”, “Cambridge Dictionary”, “Collins Online Dictionary”, “Urban Dictionary”, etc. Structural and systemic approach constitutes the rational and empirical platform of this study enabling to interpret structural relations of lexical aggregates as a system (subsystem) of elements and the language as a structural and systemic formation. To determine the neologization extent of the lexical-semantic field “Smart Energy Systems” some traditional methods of logic (analysis, synthesis, comparison, generalization, contrasting, etc.) and statistics (quantitative, grouping method) as well as linguistic methods (descriptive and structural for component and constituent analysis) were used. Results and discussion. The formation of terminological neologisms is continuous while their lexicographical documentation is characterized by an impressive delay. Based on the quantitative and comparative analysis, the neogenic growth rate in thematic groups was determined and the localization of terminological neologisms in the lexical-semantic field was specified. The knowledge of neological distribution makes it possible to predict the trends of terminology formation in the field of smart energy systems in the modern English. Two and three component wordformative models are predominant in thematic groups which reflect their nominative function and display their tendency to specification. The vocabulary enhancement of the lexical-semantic field “Smart Energy Systems” follows two ways: the extension and abridgement of words and collocations lexical length reflecting current trends in the lexical enrichment in the modern English. Conclusion. Upon the analysis of the lexical-semantic structure of the lexical-semantic field “Smart Energy Systems” the following conclusion is made: the peripheral zone, formed around the core, contains the language material imported from allied onomasiologic fields and, therefore, distinguishes by the fastest pace of neologization.


Author(s):  
Basant Singh Sikarwar ◽  
Rakesh Chandmal Sharma ◽  
R.K. Tyagi ◽  
Rakesh Kumar Phanden

This issue of International Journal of Vehicle Structures and Systems covers a special issue covering the best papers selected on peer review basis and edited by the Guest Editors as above. These 7 papers are from the research papers presented in the special session on Vehicle Structure and System Design at the 2nd International Conference on Future Learning Aspects of Mechanical Engineering (FLAME - 2020) organised by the Department of Mechanical Engineering, Amity School of Engineering and Technology, Amity University, Noida, Uttar Pradesh, India from 5th August to 7th August 2020. A short biography of each Guest Editor is also provided as further information for this special issue.


Sandeep Lakraet al.,InternationalJournal of Emerging Trends in Engineering Research, 9(5), May 2021, 587–591587A Technique of Tool Manufacturing by changing thePolarity of EDMSandeep Lakra1, Rahul Charles Francis21,2Department of Mechanical Engineering, Vaugh Institute of Agricultural Engineering and Technology, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, [email protected]@shiats.edu.inABSTRACTIn today’s modern era, cutting processes involves many vast technologies. EDM process is one of the advancedmetalcutting processes. Since most of the tools are made from conventional processes in the lathe machine. This paper proposes a technique to manufacture some specific tools by changing the polarity in EDM. Changing the polarity means changing the path of the electronfrom tool to workpiece and workpiece to tool. This results more accurately and easily for manufacturing of complex-shaped tools


Author(s):  
Tanya Vernon ◽  
Brandon Werner

In 2000, the Accreditation Board of Engineering and Technology (ABET) adopted an outcomes based approach to the US engineering curriculum. The new accreditation criteria, commonly called EC2000, call for program outcomes and assessment that provide for a ‘well rounded engineer’. Approaching nearly a decade now, are students reaping the benefits of the reform? Are students able to design better? Apply knowledge of mathematics, science, and engineering better? Are they able to communicate better and use techniques, skills and modern engineering tools necessary for engineering practice? Most importantly, are they more “well-rounded?” It may be argued that despite ABET accreditation reform, the undergraduate mechanical engineering curriculum has remained relatively static over the last decade, adjusting for obvious changes in cross-disciplinary study and some emergent technologies. Girt with hundreds of hours of core and required subjects such as calculus, physics, dynamics, fluid mechanics, strength of materials, thermodynamics, etc. the undergraduate mechanical engineering student generally has but one occasion to flex his/her intellectual and innovative acuity—the senior design project. While students occasionally work in teams, rarely are students exposed to genuine challenges of group interaction, delivery schedules and cost constraints as catalyzed in industry. How is authentic innovation achieved in a learning environment?


Sign in / Sign up

Export Citation Format

Share Document