scholarly journals Slenderness of pedunculate oak (Quercus robur L.) according to biosocial position

2018 ◽  
Vol 73 (3) ◽  
pp. 37-43
Author(s):  
ZDZISŁAW KACZMARSKI ◽  
KATARZYNA MASTERNAK ◽  
MATEUSZ JARMUŁ

The paper presents results of an analysis of pedunculate oak slenderness. The dependence between slenderness of the oak tree and dimensions of the trunk and the crown dimensions of a single tree were examined. The biosocial position of each tree was determined based on the Kraft’s classification criteria. Following dimensions were measured for each tree: height, height of base of live crown, crown radius, diameter at breast height. The following crown parameters related to the growth space of a single tree were determined: crown length, crown width, crown projection area, space of a single tree, Seebach’s growth space number, crown projection area to basal area ratio, crown spread. Based on the obtained results, the following was found: biosocial position of the oak tree in vertical structure of the stand has significant impact on the size of the tree slenderness; the slenderness increases with deterioration of the biosocial position of the tree, but it decreases with the increase in the value of the tree’s measurement characteristics and the measures of its crown. 

2013 ◽  
Vol 74 (2) ◽  
pp. 93-100 ◽  
Author(s):  
Katarzyna Kaźmierczak

Abstract The study presents the results of an analysis of the pine tree growth increments (height increment, dbh increment, basal area increment and volume increment) for a 5-year period. The study involved Scots pine trees of Kraft’s class 1, 2 and 3 (dominant stand) in stands of different age classes (II, III, V) growing in fresh mixed coniferous (BMśw) and fresh coniferous (Bśw) forest habitats. The multivariate analysis of variance was performed to assess the statistical significance of age and dominance of trees within a stand on their increment. The dominance position was classified for each tree using Kraft’s criteria. The following characteristic were also measured: dbh of the trunk in two directions (N-S and W-E), and crown projection area on the basis of the characteristic tree crown points, projected using of a crown projector, characteristic points in tree crowns (7 to 14 on average). The actual height was determined after trees were felled. The following measurements of the single tree growing space were selected and determined: crown projection area - pk (m2), crown diameter - dk (m), Seebach’s growth space number - dk / d1.3, crown projection area to basal area ratio d 2 k / d 2 1.3, crown deflection coefficient dk / h, single tree space ppd = pk·h (m3). We assessed the strength of the relationships between tree growth parameters and tree growth space, crown length, relative crown length and slenderness. Both the age and dominance position of trees within the stand affected the growth increments. The strongest correlation among measured traits was between the 5-year volume increment and decreasing slenderness.


Author(s):  
А. M. Galasheva ◽  
Е. N. Sedov

For the first time in the world and in Russia, Academician of the Russian Academy of Sciences, breeder Evgeny Nikolaevich Sedov created a series of triploid apple cultivars from intervalent crosses 2х × 4х. Triploid apple cultivars bear fruit more regularly, have higher self-fruitfulness and have fruits of high marketability. The article presents data on the study of triploid apple cultivars of the summer ripening period of the VNIISPK breeding - Augusta, Daryona, Maslovskoye, Osipovskoye, Zhilinskoye, Spasskoye and Yablochny Spas as well as the control Canadian cultivar Melba on a semi-dwarf clone rootstock 54-118. Maslovskoye, Zhilinskoye, Spasskoye and Yablochny Spas have immunity to scab. The orchard was planted in 2014, the garden planting scheme was 5 x 2 m. The indicators of the growth force (tree height, crown width and stem diameter) and the yield of trees were studied. At the age of six, the trees of triploid cultivars reached a height of 2.2 m (Maslovskoye) to 3.0 m (Yablochny Spas) on a semi-dwarf rootstock 54-118. The highest indicators of crown volume (3.3-5.3 m3), crown projection area (4.2-5.3 m2) and the cross-sectional area of the stem (46.5-52.8 cm2) were in Osipovskoye, Yablochny Spas, Zhilinskoye and Spasskoye. The highest yield in an average of three years was given by triploid scab-immune apple cultivars on a semi-dwarf rootstock 54-118: Maslovskoye, Zhilinskoye, Spasskoye and Yablochny Spas.


2016 ◽  
Vol 58 (1) ◽  
pp. 31-42 ◽  
Author(s):  
Katarzyna Kaźmierczak ◽  
Bogna Zawieja

AbstractThe paper presents an attempt to apply measurable traits of a tree – crown projection area, crown length, diameter at breast height and tree height for classification of 135-year-old oak (QuercusL.) trees into Kraft classes. Statistical multivariate analysis was applied to reach the aim. Empirical material was collected on sample plot area of 0.75 ha, located in 135-year-old oak stand. Analysis of dimensional traits of oaks from 135-year-old stand allows quite certain classification of trees into three groups: pre-dominant, dominant and co-dominant and dominated ones. This seems to be quite promising, providing a tool for the approximation of the biosocial position of tree with no need for assessment in forest. Applied analyses do not allow distinguishing trees belonging to II and III Kraft classes. Unless the eye-estimation-based classification is completed, principal component analysis (PCA) method provided simple, provisional solution for grouping trees from 135-year-old stand into three over-mentioned groups. Discriminant analysis gives more precise results compared with PCA. In the analysed stand, the most important traits for the evaluation of biosocial position were diameter at breast height, crown projection area and height.


1998 ◽  
Vol 28 (9) ◽  
pp. 1344-1351 ◽  
Author(s):  
Hubert Sterba ◽  
Ralph L Amateis

Crown efficiency was first defined by Assmann (1961. Waldertragskunde. BLV, München) as individual tree volume increment per unit of crown projection area. He hypothesized that within a given crown class, smaller crowns are more efficient because their ratio between crown surface and horizontal crown projection is higher. Data from a loblolly pine (Pinus taeda L.) spacing experiment were used to test if this hypothesis also holds in young loblolly pine stands and, if so, to determine if it explains the increment differences between spacings in the spacing experiment. Using individual tree height relative to plot dominant height to describe crown class, within-plot regression showed that crown efficiency decreased with crown size for trees below dominant height. This relationship was much less pronounced than indicated from Assmann's examples, although the crown surface to crown projection ratio behaved in the same way as Assmann had hypothesized. Crown efficiency as well as the crown surface to crown projection area ratio decreased with increasing density. Basal area increment per hectare increased until total crown closure approached 130% and then stayed constant. This major impact of total crown coverage brings into question the usefullness of crown efficiency as an indicator for unit area growth.


2017 ◽  
Vol 63 (No. 4) ◽  
pp. 173-181
Author(s):  
Štefančík Igor

Crop trees are the main bearers of qualitative and value production of the stands. Although the number and production of the mentioned trees are affected by various factors, crown development by means of the thinning regime can be considered as very significant. The paper aims at the comparison of crop trees in homogeneous beech (Fagus sylvatica Linnaeus) stands, which were managed by three different management or thinning regimes for a long period (ca. 50 years): (i) heavy thinning from below (C grade according to the German forest research institutes released in 1902), (ii) Štefančík’s free crown thinning, (iii) without interventions (control). Selection of crop trees was carried out at the beginning of research using the best stem quality, diameter and height dimension and regular spacing). In this paper only the last assessment of crop trees aged from 83 to 105 years including 23 subplots established across the Slovakian territory was analysed. The highest number of crop trees has been reached in forests where Štefančík’s free crown thinning was applied. The proportion of these trees on subplots with the mentioned type of crown thinning was 61% out of the basal area at stand age of 100 years. A much lower proportion was found on subplots managed by thinning from below (32%) and on control ones (20%). Crown parameters (crown width, crown ratio, crown projection area, crown surface area and volume) showed the most appropriate values on subplots where Štefančík’s free crown thinning was used. It was: 8.36 m (crown width), 0.50 (crown ratio), 56.84 m<sup>2</sup> (crown projection area), 289.56 m<sup>2</sup> (crown surface area), and 481.75 m<sup>3</sup> (volume). Based on the results obtained after almost 50 years of systematic investigations, the mentioned thinning method was recommended for beech forests.


2004 ◽  
Vol 34 (11) ◽  
pp. 2217-2229 ◽  
Author(s):  
Douglas B Mainwaring ◽  
Douglas A Maguire

Basal area and height growth were analyzed for individual trees in uneven-aged ponderosa pine (Pinus ponderosa Dougl. ex Laws.) and lodgepole pine (Pinus contorta Dougl. ex. Loud.) stands in central Oregon. Basal area growth was modeled as a function of other stand and tree variables to address three general objectives: (1) to compare the predictive ability of distance-dependent versus distance-independent stand density variables; (2) to determine the degree to which small trees negatively affect the growth of overstory trees; and (3) to test for differences in growth efficiency between species and between indices of spatial occupancy used to define efficiency (area potentially available, crown projection area, and a surrogate for total tree leaf area). Distance-dependent variables were found to improve growth predictions when added to models with only distance-independent variables, and small trees were found to have a quantifiably negative effect on the growth of larger trees. While volume growth efficiency declined with increasing levels of spatial occupancy for lodgepole pine, ponderosa pine volume growth efficiency was greatest at the highest levels of crown base sapwood area and crown projection area. The behavior in ponderosa pine resulted from the previously recognized correlation between tree height and total leaf area or crown size. The final statistical models distinguished between the positive effect of relative height and the negative effect of increasing tree size.


1981 ◽  
Vol 11 (1) ◽  
pp. 13-17 ◽  
Author(s):  
M. F. Ker ◽  
G. D. Van Raalte

Equations are given, based on data from 298 balsam fir and 88 white spruce trees in northwestern New Brunswick, for predicting ovendry weight of biomass for balsam fir and white spruce trees. Separate equations are given for each of nine components: stem wood, stem bark, total stem, branches, foliage, total crown, total aboveground weight, roots, and total tree. Independent variables used in the equations include diameter at breast height (dbh), height, crown width, crown length, and indices of basal area, crown area, and crown volume.


2005 ◽  
Vol 81 (1) ◽  
pp. 133-141 ◽  
Author(s):  
Hailemariam Temesgen ◽  
Valerie LeMay ◽  
Stephen J Mitchell

The ratio of live crown length to tree height (crown ratio; CR) is often used as an important predictor variable for tree level growth equations, particularly for multi-species and multi-layered stands. Also, CR indicates tree vigour and can be an important habitat variable. Measurement of CR for each tree can be time-consuming and difficult to obtain in very dense stands and for very tall trees where the base of live crown is obscured. Models to predict CR from size, competition and site variables were developed for several coniferous and one hardwood tree species growing in multispecies and multi-layered forest stands (complex stands) of southeastern British Columbia. Simple correlations indicated the expected relationships of CR decreasing with increasing height, and with increasing competition. A logistic model form was used to constrain predicted CR values to the interval [0,1]. Also, predictors were divided into tree size, stand competition, and site measures, and the contribution of each set of contributors was examined. For all models, height was an important predictor. The stand competition measure, basal area of larger trees, contributed significantly to predicting CR given that crown competition factor was also included as a measure of competition. Logical trends in CR versus size and competition variable groups were reflected by the models; site variable slightly improved predictions for some species. Much of the variability in CR was not accounted for, indicating that other variables are important for explaining CR changes in these complex stands. Key words: crown ratio, multi-species stands, multi-layered stands, basal area of larger trees


1987 ◽  
Vol 17 (4) ◽  
pp. 320-324 ◽  
Author(s):  
Roger D. Hungerford

Six stands of lodgepole pine, Pinuscontorta ssp. latifolia (Engelm.) Critchfield, in Montana were sampled to evaluate sapwood area (at 1.37 m and the crown base), basal area (at 1.37 m), tree height, and crown length as predictors of foliage area. Densities of the six stands ranged from 2900 to 17 800 stems/ha. This density range was picked to determine how stand density affects the ratio of foliage area to basal sapwood area. Regression estimates of foliage area using basal area and sapwood area at 1.37 m and the crown base were equally good. Within the sampled range of stand densities, differences in the foliage area to sapwood area ratio were not significant. The amount of foliage area served per unit of sapwood area (at 1.37 m) averaged 0.25 m2/cm2 for all 54 trees sampled. This value of foliage area per unit of sapwood area in dense stands was smaller than most other published values.


1992 ◽  
Vol 22 (11) ◽  
pp. 1684-1693 ◽  
Author(s):  
Marie R. Coyea ◽  
Hank A. Margolis

The ratio between projected leaf area (LA) and cross-sectional sapwood area (SA) of dominant and codominant balsam fir trees (Abiesbalsamea (L.) Mill.) was determined in 24 forest stands across the province of Quebec. Various physical factors proposed in the Whitehead hydraulic model, and some of the easily measured surrogates of these factors, were tested for their influence on LA:SA ratios. Average growing season vapor pressure deficit, temperature, precipitation, and stand drainage class did not significantly influence LA:SA ratios. On the other hand, LA:SA ratios were positively influenced by sapwood permeability (k), tree height, and crown length. As suggested by the model, there was a positive correlation between sapwood permeability and LA:SA ratio and a negative correlation between tree height or crown length and LA/(SA k). Increases in sapwood permeability with tree age were associated with longer tracheids having larger lumen diameters. Of the various empirical factors tested, only site quality, 5-year basal area growth, and age had a significant influence on LA:SA ratios. Sapwood cross-sectional area at breast height by itself was a reasonable linear predictor of LA for all stands (LA = −0.158 + 0.709 SABH, R2 = 0.75). Using the variables that were previously determined to influence LA:SA ratios, stepwise regressions revealed that only crown length and 5-year basal area growth significantly improved linear predictions of LA based on sapwood area. However, the increase in R2 was relatively modest, i.e., 0.83 for all three independent variables versus 0.75 for SA alone. The results from this study will be useful in integrating physiologically based measurements, such as growth efficiency, into standard forest inventory practices for balsam fir and thus could be beneficial in developing new silvicultural strategies for protecting Quebec's forest resource.


Sign in / Sign up

Export Citation Format

Share Document