scholarly journals Fluidity of AZ91D magnesium alloy chips stirred at semi-solid state and mechanical properties after press-forming.

1995 ◽  
Vol 45 (9) ◽  
pp. 516-521 ◽  
Author(s):  
Kazutoshi SEKIHARA ◽  
Satoshi OHNISHI ◽  
Shigeharu KAMADO ◽  
Yo KOJIMA
2006 ◽  
Vol 116-117 ◽  
pp. 267-270 ◽  
Author(s):  
Ju Fu Jiang ◽  
Shou Jing Luo

The thixoforging process in which magazine plates of AZ91D magnesium alloy were thixoforged in semi-solid state using semi-solid billets prepared by common SIMA method and new SIMA method was investigated. The results show that the pressure has a great influence on the semi-solid billet’s ability to fill die’s cavity. When the pressure is 500KN, the semi-solid billet can’t fill the die’s cavity completely. When the pressure is 2000KN, the semi-solid billet can fill the die’s cavity completely. Room temperature mechanical properties, such as yield strength of 201.4MPa, ultimate tensile strength of 321.8MPa and elongation of 15.3%, can be obtained successfully when the technological parameters, including pressure of 200KN, die preheating temperature of 723K, holding for 20min at 818K, are satisfied. Comparing with common SIMA, mechanical properties of room temperature and high temperature at 373Kare enhanced heavily.


2016 ◽  
Vol 850 ◽  
pp. 790-801
Author(s):  
Hong Xu ◽  
Xin Zhang ◽  
Chang Shun Wang ◽  
Jin Chuan Hu ◽  
Cheng Wang ◽  
...  

AZ91D magnesium alloy is one of the most widely used magnesium alloys in the production of metal forming, which use the characteristics from liquid state to solid state of metal to form. The present status of the research and application of the semi-solid forming for AZ91D magnesium alloys at present was reviewed in this paper, including the microstructural characteristics, the thixotropic and rheological behavior, the forming process of semi-solid for AZ91D magnesium alloys and the mechanical properties of the parts made of semi-solid magnesium alloys. The developing prospects and the key points of the semi-solid forming for AZ91D magnesium alloys were forecasted, and the industrial application of the alloy were also discussed.


2006 ◽  
Vol 324-325 ◽  
pp. 499-502
Author(s):  
Ze Sheng Ji ◽  
Mao Liang Hu ◽  
Xiao Yu Chen

AZ91D magnesium alloy is prepared by hot extrusion of recycled machined chips and its fractures and mechanical properties are investigated at various extrusion conditions. Cold-press is employed to prepare extrusion billets of AZ91D magnesium alloy chips, and then the billets are hot extruded at 573K-723K with an extrusion ratio of 11:1. The results show that tensile strength and elongation of the extrusion magnesium alloy with the extrusion temperature of 673K and the extrusion rate of 0.08mm/s can reach 380MPa and 6%, respectively. Fracture surface presents a mix mechanism of dimple-like fracture and gliding fracture. Due to grain refinement by cold-press and hot extrusion, mechanical properties of extruded rods are much higher than those of as-cast AZ91D magnesium alloy. Also, much lower energy consumption is necessary for this recycling compared to the conventional casting process. Solid state recycling is an efficient method for magnesium alloy chips recycling.


2006 ◽  
Vol 116-117 ◽  
pp. 132-135 ◽  
Author(s):  
Ju Fu Jiang ◽  
Shou Jing Luo

By using equal channel angular extrusion (ECAE) as strain induced step in strain induced melt activated (SIMA) and completing melt activated step by using semi-solid isothermal treatment, a new SIMA method is introduced firstly. The results show that semi-solid billet with highly spheroidal and homogeneous grains with the average grain size of 20μm can be prepared by new SIMA method. High mechanical properties, such as ultimate tensile strength of 321.8MPa and elongation of 15.2% are obtained in magazine plate components thixoforged using semi-solid billet prepared by new SIMA.


2006 ◽  
Vol 116-117 ◽  
pp. 279-283
Author(s):  
Wei Wei Shan ◽  
Zhi Ming Du ◽  
Shou Jing Luo

ZK60-RE is a kind of high strength magnesium alloy. Here, starting materials are casting ZK60-RE magnesium alloy and ZK60-RE magnesium alloy extruded by equal channel angular extrusion (ECAE), reheating to semi-solid state and studied on their partial remelting microstructures by means of microscope. The results show that ZK60-RE magnesium alloy extruded by ECAE are much finer and lead to the formation of spheroids quite rapidly while RE elements modified casting need a little longer time. At the same time, the mechanical properties of two kinds of ZK60-RE magnesium alloys are given. To do that, we want to find better magnesium alloys with high mechanical properties and good thixotropy, which adapt to semi-solid process to form the high quality complex component one time.


Sign in / Sign up

Export Citation Format

Share Document